A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q7
OCR FP3 2010 January — Question 7
Exam Board
OCR
Module
FP3 (Further Pure Mathematics 3)
Year
2010
Session
January
Topic
Complex numbers 2
7
Solve the equation \(\cos 6 \theta = 0\), for \(0 < \theta < \pi\).
By using de Moivre's theorem, show that $$\cos 6 \theta \equiv \left( 2 \cos ^ { 2 } \theta - 1 \right) \left( 16 \cos ^ { 4 } \theta - 16 \cos ^ { 2 } \theta + 1 \right)$$
Hence find the exact value of $$\cos \left( \frac { 1 } { 12 } \pi \right) \cos \left( \frac { 5 } { 12 } \pi \right) \cos \left( \frac { 7 } { 12 } \pi \right) \cos \left( \frac { 11 } { 12 } \pi \right)$$ justifying your answer.
This paper
(7 questions)
View full paper
Q1
Q3
Q4
Q5
Q6
Q7
Q8