OCR MEI FP2 2011 June — Question 2

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJune
TopicComplex numbers 2

2
  1. Use de Moivre's theorem to find expressions for \(\sin 5 \theta\) and \(\cos 5 \theta\) in terms of \(\sin \theta\) and \(\cos \theta\).
    Hence show that, if \(t = \tan \theta\), then $$\tan 5 \theta = \frac { t \left( t ^ { 4 } - 10 t ^ { 2 } + 5 \right) } { 5 t ^ { 4 } - 10 t ^ { 2 } + 1 }$$
    1. Find the 5th roots of \(- 4 \sqrt { 2 }\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\). These 5th roots are represented in the Argand diagram, in order of increasing \(\theta\), by the points A , \(\mathrm { B } , \mathrm { C } , \mathrm { D } , \mathrm { E }\).
    2. Draw the Argand diagram, making clear which point is which. The mid-point of AB is the point P which represents the complex number \(w\).
    3. Find, in exact form, the modulus and argument of \(w\).
    4. \(w\) is an \(n\)th root of a real number \(a\), where \(n\) is a positive integer. State the least possible value of \(n\) and find the corresponding value of \(a\).