A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q7
OCR FP3 2016 June — Question 7
Exam Board
OCR
Module
FP3 (Further Pure Mathematics 3)
Year
2016
Session
June
Topic
Complex numbers 2
Use de Moivre's theorem to show that $$\sin 6 \theta \equiv \cos \theta \left( 6 \sin \theta - 32 \sin ^ { 3 } \theta + 32 \sin ^ { 5 } \theta \right)$$
Hence show that, for \(\sin 2 \theta \neq 0\), $$- 1 \leqslant \frac { \sin 6 \theta } { \sin 2 \theta } < 3$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8