OCR MEI Further Pure Core Specimen — Question 14

Exam BoardOCR MEI
ModuleFurther Pure Core (Further Pure Core)
SessionSpecimen
TopicComplex numbers 2

  1. Starting with the result $$\mathrm { e } ^ { \mathrm { i } \theta } = \cos \theta + \mathrm { i } \sin \theta$$ show that
    (A) \(( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta\)
    (B) \(\cos \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \mathrm { i } \theta } + \mathrm { e } ^ { - \mathrm { i } \theta } \right)\).
  2. Using the result in part (i) (A), obtain the values of the constants \(a , b , c\) and \(d\) in the identity
  3. Using the result in part (i) (B), obtain the values of the constants \(P , Q , R\) and \(S\) in the identity
  4. Show that \(\cos \frac { \pi } { 12 } = \left( \frac { 26 + 15 \sqrt { 3 } } { 64 } \right) ^ { \frac { 1 } { 6 } }\).
  5. Using the result in part (i) (A), obtain the values of the constants \(a , b , c\) and \(d\) in the identity $$\cos 6 \theta \equiv a \cos ^ { 6 } \theta + b \cos ^ { 4 } \theta + c \cos ^ { 2 } \theta + d$$ $$\cos ^ { 6 } \theta \equiv P \cos 6 \theta + Q \cos 4 \theta + R \cos 2 \theta + S$$