| Exam Board | WJEC |
| Module | Further Unit 4 (Further Unit 4) |
| Year | 2022 |
| Session | June |
| Topic | Complex numbers 2 |
9. (a) (i) Expand \(\left( \cos \frac { \theta } { 3 } + i \sin \frac { \theta } { 3 } \right) ^ { 3 }\).
(ii) Hence, by using de Moivre's theorem, show that \(\cos \theta\) can be expressed as
$$4 \cos ^ { 3 } \frac { \theta } { 3 } - 3 \cos \frac { \theta } { 3 }$$
(b) Hence, or otherwise, find the general solution of the equation \(\frac { \cos \theta } { \cos \frac { \theta } { 3 } } = 1\).