WJEC Further Unit 4 2023 June — Question 3

Exam BoardWJEC
ModuleFurther Unit 4 (Further Unit 4)
Year2023
SessionJune
TopicComplex numbers 2

3. (a) Given that \(z = \cos \theta + \operatorname { isin } \theta\), use de Moivre's theorem to show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$ (b) Express \(32 \cos ^ { 6 } \theta\) in the form \(a \cos 6 \theta + b \cos 4 \theta + c \cos 2 \theta + d\), where \(a , b , c , d\) are integers whose values are to be determined.