| Exam Board | WJEC |
| Module | Further Unit 4 (Further Unit 4) |
| Year | 2023 |
| Session | June |
| Topic | Complex numbers 2 |
3. (a) Given that \(z = \cos \theta + \operatorname { isin } \theta\), use de Moivre's theorem to show that
$$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
(b) Express \(32 \cos ^ { 6 } \theta\) in the form \(a \cos 6 \theta + b \cos 4 \theta + c \cos 2 \theta + d\), where \(a , b , c , d\) are integers whose values are to be determined.