CAIE FP1 2008 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionNovember
TopicComplex numbers 2

10 Use de Moivre's theorem to express \(\cos 8 \theta\) as a polynomial in \(\cos \theta\). Hence
  1. express \(\cos 8 \theta\) as a polynomial in \(\sin \theta\),
  2. find the exact value of $$4 x ^ { 4 } - 8 x ^ { 3 } + 5 x ^ { 2 } - x$$ where \(x = \cos ^ { 2 } \left( \frac { 1 } { 8 } \pi \right)\).