Edexcel FP2 2008 June — Question 11

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJune
TopicComplex numbers 2

  1. De Moivre's theorem states that \(\quad ( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta\) for \(n \in \Re\)
    1. Use induction to prove de Moivre's theorem for \(n \in \mathbb { Z } ^ { + }\).
    2. Show that \(\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta\)
    3. Hence show that \(2 \cos \frac { \pi } { 10 }\) is a root of the equation
    $$x ^ { 4 } - 5 x ^ { 2 } + 5 = 0$$