A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q11
Edexcel FP2 2008 June — Question 11
Exam Board
Edexcel
Module
FP2 (Further Pure Mathematics 2)
Year
2008
Session
June
Topic
Complex numbers 2
De Moivre's theorem states that \(\quad ( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta\) for \(n \in \Re\)
Use induction to prove de Moivre's theorem for \(n \in \mathbb { Z } ^ { + }\).
Show that \(\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta\)
Hence show that \(2 \cos \frac { \pi } { 10 }\) is a root of the equation
$$x ^ { 4 } - 5 x ^ { 2 } + 5 = 0$$
This paper
(9 questions)
View full paper
Q1
Q2
Q5
Q6
Q7
Q8
Q9
Q10
Q11