Vectors 3D & Lines

297 questions · 20 question types identified

Sort by: Question count | Difficulty
Perpendicularity conditions

Questions asking to find unknown constants given that two vectors are perpendicular, using the condition that their scalar product equals zero.

31 Moderate -0.4
10.4% of questions
Show example »
5 Two vectors, \(\mathbf { u }\) and \(\mathbf { v }\), are such that $$\mathbf { u } = \left( \begin{array} { l } q
2
View full question →
Easiest question Easy -1.8 »
2 The two vectors \(\mathbf { a }\) and \(\mathbf { b }\) are such that \(\mathbf { a } \cdot \mathbf { b } = 0\) State the angle between the vectors \(\mathbf { a }\) and \(\mathbf { b }\) Circle your answer.
[0pt] [1 mark] \(0 ^ { \circ } 45 ^ { \circ } 90 ^ { \circ } 180 ^ { \circ }\)
View full question →
Hardest question Standard +0.3 »
2 Relative to an origin \(O\), the position vectors of points \(A\) and \(B\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r }
View full question →
Perpendicular from point to line

Questions asking to find the foot of the perpendicular from a point (often the origin) to a line, or the shortest distance from a point to a line.

29 Standard +0.3
9.8% of questions
Show example »
1
6 \end{array} \right) + \lambda \left( \begin{array} { r }
View full question →
Easiest question Moderate -0.3 »
  1. Relative to a fixed origin \(O\), the point \(A\) has position vector \(\mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k }\) and the point \(B\) has position vector \(- 2 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }\). The points \(A\) and \(B\) lie on a straight line \(l\).
    1. Find \(\overrightarrow { A B }\).
    2. Find a vector equation of \(l\).
    The point \(C\) has position vector \(2 \mathbf { i } + p \mathbf { j } - 4 \mathbf { k }\) with respect to \(O\), where \(p\) is a constant. Given that \(A C\) is perpendicular to \(l\), find
  2. the value of \(p\),
  3. the distance \(A C\).
View full question →
Hardest question Challenging +1.2 »
The line \(l _ { 1 }\) passes through the point \(A\) whose position vector is \(4 \mathbf { i } + 7 \mathbf { j } - \mathbf { k }\) and is parallel to the vector \(3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }\). The line \(l _ { 2 }\) passes through the point \(B\) whose position vector is \(\mathbf { i } + 7 \mathbf { j } + 11 \mathbf { k }\) and is parallel to the vector \(\mathbf { i } - 6 \mathbf { j } - 2 \mathbf { k }\). The points \(P\) on \(l _ { 1 }\) and \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vectors of \(P\) and \(Q\). Find the shortest distance between the line through \(A\) and \(B\) and the line through \(P\) and \(Q\), giving your answer correct to 3 significant figures.
View full question →
Line intersection (vector form)

Questions asking to find where two lines given in vector form r = a + λb intersect, by equating components and solving for parameters.

29 Standard +0.2
9.8% of questions
Show example »
11. With respect to a fixed origin \(O\) the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \mathbf { r } = \left( \begin{array} { r }
View full question →
Easiest question Moderate -0.8 »
5 Verify that the point \(( - 1,6,5 )\) lies on both the lines $$\mathbf { r } = \left( \begin{array} { r } 1
2
- 1 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
2
3 \end{array} \right) \quad \text { and } \quad \mathbf { r } = \left( \begin{array} { l } 0
View full question →
Hardest question Standard +0.3 »
11. With respect to a fixed origin \(O\) the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \mathbf { r } = \left( \begin{array} { r }
View full question →
Area calculations using vectors

Questions asking to find the area of a triangle or parallelogram using vector methods, often involving ½|a||b|sin θ or showing perpendicularity first.

28 Standard +0.4
9.4% of questions
Show example »
5 The points A , B and C have coordinates \(( 2,0 , - 1 ) , ( 4,3 , - 6 )\) and \(( 9,3 , - 4 )\) respectively.
  1. Show that AB is perpendicular to BC .
  2. Find the area of triangle ABC .
View full question →
Easiest question Moderate -0.3 »
6 Relative to an origin \(O\), the position vector of \(A\) is \(3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k }\) and the position vector of \(B\) is \(7 \mathbf { i } - 3 \mathbf { j } + \mathbf { k }\).
  1. Show that angle \(O A B\) is a right angle.
  2. Find the area of triangle \(O A B\).
View full question →
Hardest question Challenging +1.2 »
7
0
7 \end{array} \right) + \mu \left( \begin{array} { r } 3
- 5
4 \end{array} \right) , \quad \text { where } \mu \text { is a scalar parameter. }$$
  1. Find the value of the constant \(p\).
  2. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect and find the position vector of their point of intersection, \(C\).
  3. Find the size of the angle \(A C B\), giving your answer in degrees to 3 significant figures.
  4. Find the area of the triangle \(A B C\), giving your answer to 3 significant figures.\\ 7. The rate of increase of the number, \(N\), of fish in a lake is modelled by the differential equation $$\frac { \mathrm { d } N } { \mathrm {~d} t } = \frac { ( k t - 1 ) ( 5000 - N ) } { t } \quad t > 0 , \quad 0 < N < 5000$$ In the given equation, the time \(t\) is measured in years from the start of January 2000 and \(k\) is a positive constant.
  5. By solving the differential equation, show that $$N = 5000 - A t \mathrm { e } ^ { - k t }$$ where \(A\) is a positive constant. After one year, at the start of January 2001, there are 1200 fish in the lake. After two years, at the start of January 2002, there are 1800 fish in the lake.
  6. Find the exact value of the constant \(A\) and the exact value of the constant \(k\).
  7. Hence find the number of fish in the lake after five years. Give your answer to the nearest hundred fish.
View full question →
Point on line with condition

Questions asking to find a specific point on a line satisfying a geometric condition such as perpendicularity to another vector, equal distances, or a given angle.

26 Standard +0.5
8.8% of questions
Show example »
  1. With respect to a fixed origin \(O\), the line \(l\) has equation
$$\mathbf { r } = \left( \begin{array} { c }
View full question →
Easiest question Standard +0.3 »
9 \includegraphics[max width=\textwidth, alt={}, center]{9f17f7b8-b54d-467d-be26-21c599ce6ca2-4_724_1488_257_330} The diagram shows a cuboid \(O A B C D E F G\) with a horizontal base \(O A B C\) in which \(O A = 4 \mathrm {~cm}\) and \(A B = 15 \mathrm {~cm}\). The height \(O D\) of the cuboid is 2 cm . The point \(X\) on \(A B\) is such that \(A X = 5 \mathrm {~cm}\) and the point \(P\) on \(D G\) is such that \(D P = p \mathrm {~cm}\), where \(p\) is a constant. Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O D\) respectively.
  1. Find the possible values of \(p\) such that angle \(O P X = 90 ^ { \circ }\).
  2. For the case where \(p = 9\), find the unit vector in the direction of \(\overrightarrow { X P }\).
  3. A point \(Q\) lies on the face \(C B F G\) and is such that \(X Q\) is parallel to \(A G\). Find \(\overrightarrow { X Q }\).
View full question →
Hardest question Challenging +1.2 »
6 The points \(A\) and \(B\) have coordinates \(( 3,2,10 )\) and \(( 5 , - 2,4 )\) respectively.
The line \(l\) passes through \(A\) and has equation \(\mathbf { r } = \left[ \begin{array} { r } 3 \\ 2 \\ 10 \end{array} \right] + \lambda \left[ \begin{array} { r } 3 \\ 1 \\ - 2 \end{array} \right]\).
  1. Find the acute angle between \(l\) and the line \(A B\).
  2. The point \(C\) lies on \(l\) such that angle \(A B C\) is \(90 ^ { \circ }\). \includegraphics[max width=\textwidth, alt={}, center]{fdd3905e-11f7-4b20-adfe-4c686018a221-12_360_339_762_852} Find the coordinates of \(C\).
  3. The point \(D\) is such that \(B D\) is parallel to \(A C\) and angle \(B C D\) is \(90 ^ { \circ }\). The point \(E\) lies on the line through \(B\) and \(D\) and is such that the length of \(D E\) is half that of \(A C\). Find the coordinates of the two possible positions of \(E\).
    [0pt] [4 marks]
View full question →
Scalar product for angles

Questions requiring use of the scalar product formula to find angles between two vectors or lines, typically asking for cos θ or the angle itself.

25 Moderate -0.2
8.4% of questions
Show example »
6 \end{array} \right) \quad \text { and } \quad \mathbf { v } = \left( \begin{array} { c }
View full question →
Easiest question Moderate -0.8 »
6 \end{array} \right) \quad \text { and } \quad \mathbf { v } = \left( \begin{array} { c }
View full question →
Hardest question Challenging +1.8 »
14. The three dimensional non-zero vector \(\boldsymbol { u }\) has the following properties:
  • The angle \(\theta\) between \(\boldsymbol { u }\) and the vector \(\left( \begin{array} { l } 1 \\ 5 \\ 9 \end{array} \right)\) is acute.
  • The (non-reflex) angle between \(\boldsymbol { u }\) and the vector \(\left( \begin{array} { l } 9 \\ 5 \\ 1 \end{array} \right)\) is \(2 \theta\).
  • \(\boldsymbol { u }\) is perpendicular to the vector \(\left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)\).
Find the angle \(\theta\).
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
View full question →
Vector geometry in 3D shapes

Questions involving cuboids, cylinders, pyramids or other 3D shapes where vectors must be expressed in terms of i, j, k using the geometry, then angles or distances calculated.

21 Standard +0.2
7.1% of questions
Show example »
8 \includegraphics[max width=\textwidth, alt={}, center]{d178603a-f59a-4986-b5ab-b47eceedb2fc-12_595_748_260_699} The diagram shows a solid figure \(O A B C D E F\) having a horizontal rectangular base \(O A B C\) with \(O A = 6\) units and \(A B = 3\) units. The vertical edges \(O F , A D\) and \(B E\) have lengths 6 units, 4 units and 4 units respectively. Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O F\) respectively.
  1. Find \(\overrightarrow { D F }\).
  2. Find the unit vector in the direction of \(\overrightarrow { E F }\).
  3. Use a scalar product to find angle \(E F D\).
View full question →
Easiest question Moderate -0.3 »
5 \includegraphics[max width=\textwidth, alt={}, center]{b2cefbd6-6e89-495a-9f42-60f76c8c5975-3_1070_754_255_699} The diagram shows a solid cylinder standing on a horizontal circular base, centre \(O\) and radius 4 units. The line \(B A\) is a diameter and the radius \(O C\) is at \(90 ^ { \circ }\) to \(O A\). Points \(O ^ { \prime } , A ^ { \prime } , B ^ { \prime }\) and \(C ^ { \prime }\) lie on the upper surface of the cylinder such that \(O O ^ { \prime } , A A ^ { \prime } , B B ^ { \prime }\) and \(C C ^ { \prime }\) are all vertical and of length 12 units. The mid-point of \(B B ^ { \prime }\) is \(M\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O O ^ { \prime }\) respectively.
  1. Express each of the vectors \(\overrightarrow { M O }\) and \(\overrightarrow { M C ^ { \prime } }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  2. Hence find the angle \(O M C ^ { \prime }\).
View full question →
Hardest question Standard +0.8 »
9 \includegraphics[max width=\textwidth, alt={}, center]{ae57d8f1-5a0d-426c-952d-e8b99c6aeaba-4_582_1072_255_541} The diagram shows a pyramid \(O A B C P\) in which the horizontal base \(O A B C\) is a square of side 10 cm and the vertex \(P\) is 10 cm vertically above \(O\). The points \(D , E , F , G\) lie on \(O P , A P , B P , C P\) respectively and \(D E F G\) is a horizontal square of side 6 cm . The height of \(D E F G\) above the base is \(a \mathrm {~cm}\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O D\) respectively.
  1. Show that \(a = 4\).
  2. Express the vector \(\overrightarrow { B G }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  3. Use a scalar product to find angle \(G B A\).
View full question →
Parallel and perpendicular lines

Questions asking to show lines are parallel (direction vectors are scalar multiples) or perpendicular (direction vectors have zero scalar product), or to find constants ensuring these relationships.

16 Moderate -0.0
5.4% of questions
Show example »
4. With respect to a fixed origin \(O\) the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { c }
View full question →
Easiest question Easy -1.2 »
3 The line \(L\) has equation \(\mathbf { r } = \left[ \begin{array} { l } 3 \\ 2 \\ 0 \end{array} \right] + \lambda \left[ \begin{array} { c } - 1 \\ - 2 \\ 5 \end{array} \right]\) Which of the following lines is perpendicular to the line \(L\) ?
Tick \(( \checkmark )\) one box. $$\begin{aligned} & \mathbf { r } = \left[ \begin{array} { c } 2 \\ - 3 \\ 4 \end{array} \right] + \mu \left[ \begin{array} { c } 1 \\ 2 \\ - 5 \end{array} \right] \\ & \mathbf { r } = \left[ \begin{array} { l } 1 \\ 0 \\ 1 \end{array} \right] + \mu \left[ \begin{array} { c } 2 \\ - 3 \\ 1 \end{array} \right] \\ & \mathbf { r } = \left[ \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right] + \mu \left[ \begin{array} { l } 1 \\ 1 \\ 2 \end{array} \right] \\ & \mathbf { r } = \left[ \begin{array} { l } 0 \\ 3 \\ 2 \end{array} \right] + \mu \left[ \begin{array} { l } 4 \\ 3 \\ 2 \end{array} \right] \end{aligned}$$ □


View full question →
Hardest question Standard +0.3 »
7 \includegraphics[max width=\textwidth, alt={}, center]{1a4ddaa9-1ec2-4138-bfcb-a482fe6c942f-3_394_750_260_699} The diagram shows a trapezium \(A B C D\) in which \(B A\) is parallel to \(C D\). The position vectors of \(A , B\) and \(C\) relative to an origin \(O\) are given by $$\overrightarrow { O A } = \left( \begin{array} { l } 3 \\ 4 \\ 0 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { l } 1 \\ 3 \\ 2 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { l } 4 \\ 5 \\ 6 \end{array} \right)$$
  1. Use a scalar product to show that \(A B\) is perpendicular to \(B C\).
  2. Given that the length of \(C D\) is 12 units, find the position vector of \(D\).
View full question →
Triangle and parallelogram problems

Questions involving properties of triangles or parallelograms defined by position vectors, including finding vertices, showing perpendicularity, or calculating areas.

11 Standard +0.1
3.7% of questions
Show example »
8 The points \(A ( 3,2,1 ) , B ( 5,4 , - 3 ) , C ( 3,17 , - 4 )\) and \(D ( 1,6,3 )\) form a quadrilateral \(A B C D\).
  1. Show that \(A B = A D\).
  2. Find a vector equation of the line through \(A\) and the mid-point of \(B D\).
  3. Show that \(C\) lies on the line found in part (ii).
  4. What type of quadrilateral is \(A B C D\) ?
View full question →
Easiest question Moderate -0.8 »
  1. Relative to a fixed origin \(O\),
    the point \(A\) has position vector \(\mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k }\),
    the point \(B\) has position vector \(4 \mathbf { i } + 3 \mathbf { j } + 3 \mathbf { k }\),
    and the point \(C\) has position vector \(2 \mathbf { i } + 10 \mathbf { j } + 9 \mathbf { k }\).
    Given that \(A B C D\) is a parallelogram,
    1. find the position vector of point \(D\).
    The vector \(\overrightarrow { A X }\) has the same direction as \(\overrightarrow { A B }\).
    Given that \(| \overrightarrow { A X } | = 10 \sqrt { 2 }\),
  2. find the position vector of \(X\).
View full question →
Hardest question Challenging +1.2 »
6 The line \(l _ { 1 }\) passes through the point \(A ( 0,6,9 )\) and the point \(B ( 4 , - 6 , - 11 )\).
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } - 1 \\ 5 \\ - 2 \end{array} \right] + \lambda \left[ \begin{array} { r } 3 \\ - 5 \\ 1 \end{array} \right]\).
  1. The acute angle between the lines \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\). Find the value of \(\cos \theta\) as a fraction in its lowest terms.
  2. Show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect and find the coordinates of the point of intersection.
  3. The points \(C\) and \(D\) lie on line \(l _ { 2 }\) such that \(A C B D\) is a parallelogram. \includegraphics[max width=\textwidth, alt={}, center]{c42685e9-bfa4-48d4-8abb-13e88a4b765e-12_392_949_1018_548} The length of \(A B\) is three times the length of \(C D\).
    Find the coordinates of the points \(C\) and \(D\).
    [0pt] [5 marks] \(7 \quad\) A curve \(C\) is defined by the parametric equations $$x = \frac { 4 - \mathrm { e } ^ { 2 - 6 t } } { 4 } , \quad y = \frac { \mathrm { e } ^ { 3 t } } { 3 t } , \quad t \neq 0$$
View full question →
Angle between two lines

Questions asking for the acute angle between two lines given in vector form, using the scalar product of their direction vectors.

10 Standard +0.1
3.4% of questions
Show example »
4. With respect to a fixed origin \(O\), the line \(l _ { 1 }\) has vector equation $$\mathbf { r } = \left( \begin{array} { r } - 9
View full question →
Easiest question Moderate -0.3 »
4. With respect to a fixed origin \(O\), the line \(l _ { 1 }\) has vector equation $$\mathbf { r } = \left( \begin{array} { r } - 9
View full question →
Hardest question Standard +0.3 »
7. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{aligned} & l _ { 1 } : \mathbf { r } = ( 13 \mathbf { i } + 15 \mathbf { j } - 8 \mathbf { k } ) + \lambda ( 3 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k } ) \\ & l _ { 2 } : \mathbf { r } = ( 7 \mathbf { i } - 6 \mathbf { j } + 14 \mathbf { k } ) + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k } ) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection, \(B\).
  2. Find the acute angle between the lines \(l _ { 1 }\) and \(l _ { 2 }\) The point \(A\) has position vector \(- 5 \mathbf { i } - 3 \mathbf { j } + 16 \mathbf { k }\)
  3. Show that \(A\) lies on \(l _ { 1 }\) The point \(C\) lies on the line \(l _ { 1 }\) where \(\overrightarrow { A B } = \overrightarrow { B C }\)
  4. Find the position vector of \(C\).
    \section*{"}
View full question →
Position vectors and magnitudes

Questions asking to find position vectors, unit vectors, or magnitudes/distances given coordinates or vector expressions, without requiring angle calculations or geometric reasoning.

10 Moderate -0.7
3.4% of questions
Show example »
3 The points \(A\) and \(B\) have position vectors \(\mathbf { a } = \left( \begin{array} { r } 3 \\ 2 \\ - 1 \end{array} \right)\) and \(\mathbf { b } = \left( \begin{array} { r } - 1 \\ 4 \\ 8 \end{array} \right)\) respectively.
Show that the exact value of the distance \(A B\) is \(\sqrt { \mathbf { 1 0 1 } }\).
View full question →
Easiest question Easy -1.2 »
  1. Relative to a fixed origin \(O\)
  • the point \(A\) has position vector \(5 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }\)
  • the point \(B\) has position vector \(2 \mathbf { i } + 4 \mathbf { j } + a \mathbf { k }\) where \(a\) is a positive integer.
    1. Show that \(| \overrightarrow { O A } | = \sqrt { 38 }\)
    2. Find the smallest value of \(a\) for which
$$| \overrightarrow { O B } | > | \overrightarrow { O A } |$$
View full question →
Hardest question Standard +0.3 »
9 Relative to an origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 8 \\ - 6 \\ 5 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } - 10 \\ 3 \\ - 13 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r } 2 \\ - 3 \\ - 1 \end{array} \right)$$ A fourth point, \(D\), is such that the magnitudes \(| \overrightarrow { A B } | , | \overrightarrow { B C } |\) and \(| \overrightarrow { C D } |\) are the first, second and third terms respectively of a geometric progression.
  1. Find the magnitudes \(| \overrightarrow { A B } | , | \overrightarrow { B C } |\) and \(| \overrightarrow { C D } |\).
  2. Given that \(D\) is a point lying on the line through \(B\) and \(C\), find the two possible position vectors of the point \(D\).
View full question →
Kinematics with position vectors

Questions involving particles moving with constant velocity, where position vectors are functions of time and collision or closest approach must be determined.

9 Standard +0.4
3.0% of questions
Show example »
7 A particle \(P\) moves with constant acceleration \(( 3 \mathbf { i } - 5 \mathbf { j } ) \mathrm { ms } ^ { - 2 }\). At time \(t = 0\) seconds \(P\) is at the origin. At time \(t = 4\) seconds \(P\) has velocity \(( 2 \mathbf { i } + 4 \mathbf { j } ) \mathrm { ms } ^ { - 1 }\).
  1. Find the displacement vector of \(P\) at time \(t = 4\) seconds.
  2. Find the speed of \(P\) at time \(t = 0\) seconds.
View full question →
Easiest question Moderate -0.8 »
7 A particle \(P\) moves with constant acceleration \(( 3 \mathbf { i } - 5 \mathbf { j } ) \mathrm { ms } ^ { - 2 }\). At time \(t = 0\) seconds \(P\) is at the origin. At time \(t = 4\) seconds \(P\) has velocity \(( 2 \mathbf { i } + 4 \mathbf { j } ) \mathrm { ms } ^ { - 1 }\).
  1. Find the displacement vector of \(P\) at time \(t = 4\) seconds.
  2. Find the speed of \(P\) at time \(t = 0\) seconds.
View full question →
Hardest question Challenging +1.8 »
  1. An aeroplane leaves a runway and moves with a constant speed of \(V \mathrm {~km} / \mathrm { h }\) due north along a straight path inclined at an angle \(\arctan \left( \frac { 3 } { 4 } \right)\) to the horizontal.
A light aircraft is moving due north in a straight horizontal line in the same vertical plane as the aeroplane, at a height of 3 km above the runway. The light aircraft is travelling with a constant speed of \(2 V \mathrm {~km} / \mathrm { h }\).
At the moment the aeroplane leaves the runway, the light aircraft is at a horizontal distance \(d \mathrm {~km}\) behind the aeroplane. Both aircraft continue to move with the same trajectories due north.
  1. Show that the distance, \(D \mathrm {~km}\), between the two aircraft \(t\) hours after the aeroplane leaves the runway satisfies $$D ^ { 2 } = \left( \frac { 6 } { 5 } V t - d \right) ^ { 2 } + \left( \frac { 3 } { 5 } V t - 3 \right) ^ { 2 }$$ Given that the distance between the two aircraft is never less than 2 km ,
  2. find the range of possible values for \(d\).
View full question →
Line intersection verification

Questions asking to verify or show that two given lines intersect (or are skew), typically by attempting to solve the system of equations.

9 Standard +0.2
3.0% of questions
Show example »
5 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = \left( \begin{array} { l } 4
View full question →
Easiest question Moderate -0.3 »
3 Determine whether the lines whose equations are $$\mathbf { r } = ( 1 + 2 \lambda ) \mathbf { i } - \lambda \mathbf { j } + ( 3 + 5 \lambda ) \mathbf { k } \text { and } \mathbf { r } = ( \mu - 1 ) \mathbf { i } + ( 5 - \mu ) \mathbf { j } + ( 2 - 5 \mu ) \mathbf { k }$$ are parallel, intersect or are skew.
View full question →
Hardest question Standard +0.3 »
  1. The line \(l _ { 1 }\) has vector equation \(\mathbf { r } = \left( \begin{array} { r } 5 \\ - 2 \\ 4 \end{array} \right) + \lambda \left( \begin{array} { r } 6 \\ 3 \\ - 1 \end{array} \right)\), where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) has vector equation \(\mathbf { r } = \left( \begin{array} { r } 10 \\ 5 \\ - 3 \end{array} \right) + \mu \left( \begin{array} { l } 3 \\ 1 \\ 2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Justify, giving reasons in each case, whether the lines \(l _ { 1 }\) and \(l _ { 2 }\) are parallel, intersecting or skew.
(6)
View full question →
Collinearity and ratio division

Questions asking to show points are collinear, find position vectors of points dividing lines in given ratios, or express one vector as a scalar multiple of another.

9 Moderate -0.0
3.0% of questions
Show example »
3 Show that points \(\mathrm { A } ( 1,4,9 ) , \mathrm { B } ( 0,11,17 )\) and \(\mathrm { C } ( 3 , - 10 , - 7 )\) are collinear.
View full question →
Easiest question Easy -1.2 »
3 Show that points \(\mathrm { A } ( 1,4,9 ) , \mathrm { B } ( 0,11,17 )\) and \(\mathrm { C } ( 3 , - 10 , - 7 )\) are collinear.
View full question →
Hardest question Standard +0.3 »
7 Relative to an origin \(O\), the position vectors of points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 0 \\ 2 \\ - 3 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } 2 \\ 5 \\ - 2 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { l } 3 \\ p \\ q \end{array} \right)$$
  1. In the case where \(A B C\) is a straight line, find the values of \(p\) and \(q\).
  2. In the case where angle \(B A C\) is \(90 ^ { \circ }\), express \(q\) in terms of \(p\).
  3. In the case where \(p = 3\) and the lengths of \(A B\) and \(A C\) are equal, find the possible values of \(q\).
View full question →
Forces as vectors

Questions involving forces represented as 3D vectors, asking for resultants, equilibrium conditions, or magnitudes and directions of accelerations.

8 Moderate -0.7
2.7% of questions
Show example »
3 A particle is in equilibrium when acted on by the forces \(\left( \begin{array} { r } x \\ - 7 \\ z \end{array} \right) , \left( \begin{array} { r } 4 \\ y \\ - 5 \end{array} \right)\) and \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\), where the units are newtons.
  1. Find the values of \(x , y\) and \(z\).
  2. Calculate the magnitude of \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\).
View full question →
Linear combinations of vectors

Questions requiring a vector to be expressed in the form λa + μb, or solving for constants when such an expression is given.

8 Moderate -0.6
2.7% of questions
Show example »
2
1 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { l } 2
9
0 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { l }
View full question →
Equal length conditions

Questions asking to find unknown constants given that two or more vectors have equal magnitudes, using |v|² = v·v.

6 Moderate -0.0
2.0% of questions
Show example »
2. Relative to a fixed origin \(O\),
the point \(A\) has position vector \(( 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } )\) the point \(B\) has position vector ( \(\mathbf { i } + 2 \mathbf { j } - 4 \mathbf { k }\) )
and the point \(C\) has position vector \(( - \mathbf { i } + \mathbf { j } + a \mathbf { k } )\), where \(a\) is a constant and \(a > 0\).
Given that \(| \overrightarrow { B C } | = \sqrt { 41 }\) a. show that \(a = 2\). \(D\) is the point such that \(A B C D\) forms a parallelogram.
b. Find the position vector of \(D\).
View full question →
Reflection and symmetry

Questions involving reflection of points in lines or finding images under reflection, typically requiring perpendicularity and midpoint conditions.

5 Standard +0.8
1.7% of questions
Show example »
6. Relative to a fixed origin \(O\), the point \(A\) has position vector \(21 \mathbf { i } - 17 \mathbf { j } + 6 \mathbf { k }\) and the point \(B\) has position vector \(25 \mathbf { i } - 14 \mathbf { j } + 18 \mathbf { k }\). The line \(l\) has vector equation $$\mathbf { r } = \left( \begin{array} { r } a
b
View full question →
Vector equation of a line

Questions asking to find or write down the vector equation of a line passing through given points or with a given direction.

4 Standard +0.0
1.3% of questions
Show example »
2 Find where the line \(\mathbf { r } = \left( \begin{array} { l } 1 \\ 2 \\ 0 \end{array} \right) + \lambda \left( \begin{array} { l } 1 \\ 3 \\ 2 \end{array} \right)\) meets the plane \(2 x + 3 y - 4 z - 5 = 0\).
View full question →
Geometric loci and constraints

Questions where a point satisfies multiple geometric constraints (e.g., lies on a line, perpendicular to another line, at a given distance) requiring simultaneous solution.

2 Challenging +1.0
0.7% of questions
Show example »
2 The points \(A\) and \(B\) have position vectors \(3 \mathbf { i } + 2 \mathbf { j }\) and \(4 \mathbf { i } + 2 \mathbf { j } - 5 \mathbf { k }\) respectively.
  1. Find the length of \(A B\). Point \(P\) has position vector \(p \mathbf { i } - 3 \mathbf { k }\), where \(p\) is a constant. \(P\) lies on the circumference of a circle of which \(A B\) is a diameter.
  2. Find the two possible values of \(p\).
View full question →