Edexcel AEA 2022 June — Question 5

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2022
SessionJune
TopicVectors 3D & Lines

  1. An aeroplane leaves a runway and moves with a constant speed of \(V \mathrm {~km} / \mathrm { h }\) due north along a straight path inclined at an angle \(\arctan \left( \frac { 3 } { 4 } \right)\) to the horizontal.
A light aircraft is moving due north in a straight horizontal line in the same vertical plane as the aeroplane, at a height of 3 km above the runway. The light aircraft is travelling with a constant speed of \(2 V \mathrm {~km} / \mathrm { h }\).
At the moment the aeroplane leaves the runway, the light aircraft is at a horizontal distance \(d \mathrm {~km}\) behind the aeroplane. Both aircraft continue to move with the same trajectories due north.
  1. Show that the distance, \(D \mathrm {~km}\), between the two aircraft \(t\) hours after the aeroplane leaves the runway satisfies $$D ^ { 2 } = \left( \frac { 6 } { 5 } V t - d \right) ^ { 2 } + \left( \frac { 3 } { 5 } V t - 3 \right) ^ { 2 }$$ Given that the distance between the two aircraft is never less than 2 km ,
  2. find the range of possible values for \(d\).