- An aeroplane leaves a runway and moves with a constant speed of \(V \mathrm {~km} / \mathrm { h }\) due north along a straight path inclined at an angle \(\arctan \left( \frac { 3 } { 4 } \right)\) to the horizontal.
A light aircraft is moving due north in a straight horizontal line in the same vertical plane as the aeroplane, at a height of 3 km above the runway.
The light aircraft is travelling with a constant speed of \(2 V \mathrm {~km} / \mathrm { h }\).
At the moment the aeroplane leaves the runway, the light aircraft is at a horizontal distance \(d \mathrm {~km}\) behind the aeroplane.
Both aircraft continue to move with the same trajectories due north.
- Show that the distance, \(D \mathrm {~km}\), between the two aircraft \(t\) hours after the aeroplane leaves the runway satisfies
$$D ^ { 2 } = \left( \frac { 6 } { 5 } V t - d \right) ^ { 2 } + \left( \frac { 3 } { 5 } V t - 3 \right) ^ { 2 }$$
Given that the distance between the two aircraft is never less than 2 km ,
- find the range of possible values for \(d\).