9
\includegraphics[max width=\textwidth, alt={}, center]{ae57d8f1-5a0d-426c-952d-e8b99c6aeaba-4_582_1072_255_541}
The diagram shows a pyramid \(O A B C P\) in which the horizontal base \(O A B C\) is a square of side 10 cm and the vertex \(P\) is 10 cm vertically above \(O\). The points \(D , E , F , G\) lie on \(O P , A P , B P , C P\) respectively and \(D E F G\) is a horizontal square of side 6 cm . The height of \(D E F G\) above the base is \(a \mathrm {~cm}\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O D\) respectively.
- Show that \(a = 4\).
- Express the vector \(\overrightarrow { B G }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Use a scalar product to find angle \(G B A\).