Line intersection verification

Questions asking to verify or show that two given lines intersect (or are skew), typically by attempting to solve the system of equations.

9 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
Edexcel C34 2017 June Q6
6 marks Standard +0.3
  1. The line \(l _ { 1 }\) has vector equation \(\mathbf { r } = \left( \begin{array} { r } 5 \\ - 2 \\ 4 \end{array} \right) + \lambda \left( \begin{array} { r } 6 \\ 3 \\ - 1 \end{array} \right)\), where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) has vector equation \(\mathbf { r } = \left( \begin{array} { r } 10 \\ 5 \\ - 3 \end{array} \right) + \mu \left( \begin{array} { l } 3 \\ 1 \\ 2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Justify, giving reasons in each case, whether the lines \(l _ { 1 }\) and \(l _ { 2 }\) are parallel, intersecting or skew.
(6)
Edexcel C4 2007 June Q5
10 marks Standard +0.3
5. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 1 \\ 0 \\ - 1 \end{array} \right) + \lambda \left( \begin{array} { l } 1 \\ 1 \\ 0 \end{array} \right)\). The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { l } 1 \\ 3 \\ 6 \end{array} \right) + \mu \left( \begin{array} { r } 2 \\ 1 \\ - 1 \end{array} \right)\).
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) do not meet. The point \(A\) is on \(l _ { 1 }\) where \(\lambda = 1\), and the point \(B\) is on \(l _ { 2 }\) where \(\mu = 2\).
  2. Find the cosine of the acute angle between \(A B\) and \(l _ { 1 }\).
OCR C4 2008 January Q5
8 marks Standard +0.3
5 The vector equations of two lines are $$\mathbf { r } = ( 5 \mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k } ) + s ( 3 \mathbf { i } - 4 \mathbf { j } + 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = ( 2 \mathbf { i } - 2 \mathbf { j } + 7 \mathbf { k } ) + t ( 2 \mathbf { i } - \mathbf { j } - 5 \mathbf { k } ) .$$ Prove that the two lines are
  1. perpendicular,
  2. skew.
OCR C4 2005 June Q3
7 marks Standard +0.3
3 The line \(L _ { 1 }\) passes through the points \(( 2 , - 3,1 )\) and \(( - 1 , - 2 , - 4 )\). The line \(L _ { 2 }\) passes through the point ( \(3,2 , - 9\) ) and is parallel to the vector \(4 \mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k }\).
  1. Find an equation for \(L _ { 1 }\) in the form \(\mathbf { r } = \mathbf { a } + t \mathbf { b }\).
  2. Prove that \(L _ { 1 }\) and \(L _ { 2 }\) are skew.
OCR C4 Q9
Standard +0.3
9 \end{array} \right) + t \left( \begin{array} { c } 2
- 3
1 \end{array} \right)$$ (ii) Show that lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect.
(iii) Find the position vector of the point \(C\) on \(l _ { 2 }\) such that \(\angle A B C = 90 ^ { \circ }\).
8. \(f ( x ) = \frac { 5 - 8 x } { ( 1 + 2 x ) ( 1 - x ) ^ { 2 } }\).
(i) Express \(\mathrm { f } ( x )\) in partial fractions.
(ii) Find the series expansion of \(\mathrm { f } ( x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\), simplifying each coefficient.
(iii) State the set of values of \(x\) for which your expansion is valid.
OCR C4 2011 January Q6
10 marks Standard +0.3
6 The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 3 \\ 0 \\ - 2 \end{array} \right) + s \left( \begin{array} { r } 2 \\ 3 \\ - 4 \end{array} \right)\). The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { l } 5 \\ 3 \\ 2 \end{array} \right) + t \left( \begin{array} { r } 0 \\ 1 \\ - 2 \end{array} \right)\).
  1. Find the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\).
  2. Show that \(l _ { 1 }\) and \(l _ { 2 }\) are skew.
  3. One of the numbers in the equation of line \(l _ { 1 }\) is changed so that the equation becomes \(\mathbf { r } = \left( \begin{array} { l } 3 \\ 0 \\ a \end{array} \right) + s \left( \begin{array} { r } 2 \\ 3 \\ - 4 \end{array} \right)\). Given that \(l _ { 1 }\) and \(l _ { 2 }\) now intersect, find \(a\).
OCR C4 2011 June Q5
10 marks Standard +0.3
5 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = \left( \begin{array} { l } 4
OCR C4 2013 June Q3
6 marks Moderate -0.3
3 Determine whether the lines whose equations are $$\mathbf { r } = ( 1 + 2 \lambda ) \mathbf { i } - \lambda \mathbf { j } + ( 3 + 5 \lambda ) \mathbf { k } \text { and } \mathbf { r } = ( \mu - 1 ) \mathbf { i } + ( 5 - \mu ) \mathbf { j } + ( 2 - 5 \mu ) \mathbf { k }$$ are parallel, intersect or are skew.
OCR C4 Q3
7 marks Standard +0.3
3 The line \(L _ { 1 }\) passes through the points \(( 2 , - 3,1 )\) and \(( - 1 , - 2 , - 4 )\). The line \(L _ { 2 }\) passes through the point \(( 3,2 , - 9 )\) and is parallel to the vector \(4 \mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k }\).
  1. Find an equation for \(L _ { 1 }\) in the form \(\mathbf { r } = \mathbf { a } + t \mathbf { b }\).
  2. Prove that \(L _ { 1 }\) and \(L _ { 2 }\) are skew.