Linear combinations of vectors

Questions requiring a vector to be expressed in the form λa + μb, or solving for constants when such an expression is given.

8 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE P1 2007 June Q9
8 marks Moderate -0.8
9 Relative to an origin \(O\), the position vectors of the points \(A\) and \(B\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 4 \\ 1 \\ - 2 \end{array} \right) \quad \text { and } \quad \overrightarrow { O B } = \left( \begin{array} { r } 3 \\ 2 \\ - 4 \end{array} \right) .$$
  1. Given that \(C\) is the point such that \(\overrightarrow { A C } = 2 \overrightarrow { A B }\), find the unit vector in the direction of \(\overrightarrow { O C }\). The position vector of the point \(D\) is given by \(\overrightarrow { O D } = \left( \begin{array} { l } 1 \\ 4 \\ k \end{array} \right)\), where \(k\) is a constant, and it is given that \(\overrightarrow { O D } = m \overrightarrow { O A } + n \overrightarrow { O B }\), where \(m\) and \(n\) are constants.
  2. Find the values of \(m , n\) and \(k\).
OCR MEI C4 Q1
6 marks Moderate -0.5
1 The points \(\mathrm { A } , \mathrm { B }\) and C have coordinates \(\mathrm { A } ( 3,2 , - 1 ) , \mathrm { B } ( - 1,1,2 )\) and \(\mathrm { C } ( 10,5 , - 5 )\), relative to the origin O . Show that \(\overrightarrow { \mathrm { OC } }\) can be written in the form \(\lambda \overrightarrow { \mathrm { OA } } + \mu \overrightarrow { \mathrm { OB } }\), where \(\lambda\) and \(\mu\) are to be determined. What can you deduce about the points \(\mathrm { O } , \mathrm { A } , \mathrm { B }\) and C from the fact that \(\overrightarrow { \mathrm { OC } }\) can be expressed as a combination of \(\overrightarrow { \mathrm { OA } }\) and \(\overrightarrow { \mathrm { OB } }\) ?
OCR MEI C4 2009 January Q3
5 marks Moderate -0.8
3 Vectors \(\mathbf { a }\) and \(\mathbf { b }\) are given by \(\mathbf { a } = 2 \mathbf { i } + \mathbf { j } - \mathbf { k }\) and \(\mathbf { b } = 4 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\).
Find constants \(\lambda\) and \(\mu\) such that \(\lambda \mathbf { a } + \mu \mathbf { b } = 4 \mathbf { j } - 3 \mathbf { k }\).
OCR MEI C4 2013 June Q5
6 marks Moderate -0.3
5 The points \(\mathrm { A } , \mathrm { B }\) and C have coordinates \(\mathrm { A } ( 3,2 , - 1 ) , \mathrm { B } ( - 1,1,2 )\) and \(\mathrm { C } ( 10,5 , - 5 )\), relative to the origin O . Show that \(\overrightarrow { \mathrm { OC } }\) can be written in the form \(\lambda \overrightarrow { \mathrm { OA } } + \mu \overrightarrow { \mathrm { OB } }\), where \(\lambda\) and \(\mu\) are to be determined. What can you deduce about the points \(\mathrm { O } , \mathrm { A } , \mathrm { B }\) and C from the fact that \(\overrightarrow { \mathrm { OC } }\) can be expressed as a combination of \(\overrightarrow { \mathrm { OA } }\) and \(\overrightarrow { \mathrm { OB } }\) ?
CAIE FP1 2014 June Q1
5 marks Moderate -0.5
1 The vectors \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) in \(\mathbb { R } ^ { 3 }\) are given by $$\mathbf { a } = \left( \begin{array} { r }
CAIE FP1 2018 November Q1
5 marks Moderate -0.5
1 The vectors \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) in \(\mathbb { R } ^ { 3 }\) are given by $$\mathbf { a } = \left( \begin{array} { l } 1
CAIE FP1 2018 November Q2
6 marks Moderate -0.5
2
1 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { l } 2
9
0 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { l }
OCR Stats 1 2018 September Q8
9 marks Moderate -0.5
8 The points \(A , B\) and \(C\) have position vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\), relative to an origin \(O\), in three dimensions. The figure \(O A P B S C T U\) is a cuboid, with vertices labelled as in the following diagram. \(M\) is the midpoint of \(A U\). \includegraphics[max width=\textwidth, alt={}, center]{85de9a39-f8be-40ee-b0c8-e2e632be93d8-5_557_1221_2087_420}