Triangle and parallelogram problems

Questions involving properties of triangles or parallelograms defined by position vectors, including finding vertices, showing perpendicularity, or calculating areas.

11 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
OCR C4 2013 January Q8
7 marks Standard +0.3
8 The points \(A ( 3,2,1 ) , B ( 5,4 , - 3 ) , C ( 3,17 , - 4 )\) and \(D ( 1,6,3 )\) form a quadrilateral \(A B C D\).
  1. Show that \(A B = A D\).
  2. Find a vector equation of the line through \(A\) and the mid-point of \(B D\).
  3. Show that \(C\) lies on the line found in part (ii).
  4. What type of quadrilateral is \(A B C D\) ?
Edexcel Paper 1 Specimen Q4
5 marks Moderate -0.8
  1. Relative to a fixed origin \(O\),
    the point \(A\) has position vector \(\mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k }\),
    the point \(B\) has position vector \(4 \mathbf { i } + 3 \mathbf { j } + 3 \mathbf { k }\),
    and the point \(C\) has position vector \(2 \mathbf { i } + 10 \mathbf { j } + 9 \mathbf { k }\).
    Given that \(A B C D\) is a parallelogram,
    1. find the position vector of point \(D\).
    The vector \(\overrightarrow { A X }\) has the same direction as \(\overrightarrow { A B }\).
    Given that \(| \overrightarrow { A X } | = 10 \sqrt { 2 }\),
  2. find the position vector of \(X\).
AQA C4 2011 January Q8
14 marks Standard +0.3
8 The coordinates of the points \(A\) and \(B\) are \(( 3 , - 2,4 )\) and \(( 6,0,3 )\) respectively.
The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } 3 \\ - 2 \\ 4 \end{array} \right] + \lambda \left[ \begin{array} { r } 2 \\ - 1 \\ 3 \end{array} \right]\).
    1. Find the vector \(\overrightarrow { A B }\).
    2. Calculate the acute angle between \(\overrightarrow { A B }\) and the line \(l _ { 1 }\), giving your answer to the nearest \(0.1 ^ { \circ }\).
  1. The point \(D\) lies on \(l _ { 1 }\) where \(\lambda = 2\). The line \(l _ { 2 }\) passes through \(D\) and is parallel to \(A B\).
    1. Find a vector equation of line \(l _ { 2 }\) with parameter \(\mu\).
    2. The diagram shows a symmetrical trapezium \(A B C D\), with angle \(D A B\) equal to angle \(A B C\). \includegraphics[max width=\textwidth, alt={}, center]{5fe2527a-33da-4076-b3fa-4cab545336ec-9_620_675_1197_726} The point \(C\) lies on line \(l _ { 2 }\). The length of \(A D\) is equal to the length of \(B C\). Find the coordinates of \(C\).
AQA C4 2012 January Q8
12 marks Standard +0.3
8 The points \(A\) and \(B\) have coordinates \(( 4 , - 2,3 )\) and \(( 2,0 , - 1 )\) respectively. The line \(l\) passes through \(A\) and has equation \(\mathbf { r } = \left[ \begin{array} { r } 4 \\ - 2 \\ 3 \end{array} \right] + \lambda \left[ \begin{array} { r } 1 \\ 5 \\ - 2 \end{array} \right]\).
    1. Find the vector \(\overrightarrow { A B }\).
    2. Find the acute angle between \(A B\) and the line \(l\), giving your answer to the nearest degree.
  1. The point \(C\) lies on the line \(l\) such that the angle \(A B C\) is a right angle. Given that \(A B C D\) is a rectangle, find the coordinates of the point \(D\).
AQA C4 2013 January Q6
15 marks Standard +0.3
6
  1. The points \(A , B\) and \(C\) have coordinates \(( 3,1 , - 6 ) , ( 5 , - 2,0 )\) and \(( 8 , - 4 , - 6 )\) respectively.
    1. Show that the vector \(\overrightarrow { A C }\) is given by \(\overrightarrow { A C } = n \left[ \begin{array} { r } 1 \\ - 1 \\ 0 \end{array} \right]\), where \(n\) is an integer.
    2. Show that the acute angle \(A C B\) is given by \(\cos ^ { - 1 } \left( \frac { 5 \sqrt { 2 } } { 14 } \right)\).
  2. Find a vector equation of the line \(A C\).
  3. The point \(D\) has coordinates \(( 6 , - 1 , p )\). It is given that the lines \(A C\) and \(B D\) intersect.
    1. Find the value of \(p\).
    2. Show that \(A B C D\) is a rhombus, and state the length of each of its sides.
AQA C4 2010 June Q7
12 marks Standard +0.3
7 The point \(A\) has coordinates \(( 4 , - 3,2 )\).
The line \(l _ { 1 }\) passes through \(A\) and has equation \(\mathbf { r } = \left[ \begin{array} { r } 4 \\ - 3 \\ 2 \end{array} \right] + \lambda \left[ \begin{array} { l } 2 \\ 0 \\ 1 \end{array} \right]\).
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } - 1 \\ 3 \\ 4 \end{array} \right] + \mu \left[ \begin{array} { r } 1 \\ - 2 \\ - 1 \end{array} \right]\).
The point \(B\) lies on \(l _ { 2 }\) where \(\mu = 2\).
  1. Find the vector \(\overrightarrow { A B }\).
    1. Show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
    2. The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(P\). Find the coordinates of \(P\).
  2. The point \(C\) lies on a line which is parallel to \(l _ { 1 }\) and which passes through the point \(B\). The points \(A , B , C\) and \(P\) are the vertices of a parallelogram. Find the coordinates of the two possible positions of the point \(C\).
AQA C4 2016 June Q6
15 marks Challenging +1.2
6 The line \(l _ { 1 }\) passes through the point \(A ( 0,6,9 )\) and the point \(B ( 4 , - 6 , - 11 )\).
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } - 1 \\ 5 \\ - 2 \end{array} \right] + \lambda \left[ \begin{array} { r } 3 \\ - 5 \\ 1 \end{array} \right]\).
  1. The acute angle between the lines \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\). Find the value of \(\cos \theta\) as a fraction in its lowest terms.
  2. Show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect and find the coordinates of the point of intersection.
  3. The points \(C\) and \(D\) lie on line \(l _ { 2 }\) such that \(A C B D\) is a parallelogram. \includegraphics[max width=\textwidth, alt={}, center]{c42685e9-bfa4-48d4-8abb-13e88a4b765e-12_392_949_1018_548} The length of \(A B\) is three times the length of \(C D\).
    Find the coordinates of the points \(C\) and \(D\).
    [0pt] [5 marks] \(7 \quad\) A curve \(C\) is defined by the parametric equations $$x = \frac { 4 - \mathrm { e } ^ { 2 - 6 t } } { 4 } , \quad y = \frac { \mathrm { e } ^ { 3 t } } { 3 t } , \quad t \neq 0$$
Edexcel C4 Q7
15 marks Standard +0.3
7. The line \(l _ { 1 }\) has vector equation $$\mathbf { r } = \left( \begin{array} { l } 3 \\ 1 \\ 2 \end{array} \right) + \lambda \left( \begin{array} { r } 1 \\ - 1 \\ 4 \end{array} \right)$$ and the line \(l _ { 2 }\) has vector equation $$\mathbf { r } = \left( \begin{array} { r } 0 \\ 4 \\ - 2 \end{array} \right) + \mu \left( \begin{array} { r } 1 \\ - 1 \\ 0 \end{array} \right) ,$$ where \(\lambda\) and \(\mu\) are parameters.
The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(B\) and the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\).
  1. Find the coordinates of \(B\).
  2. Find the value of \(\cos \theta\), giving your answer as a simplified fraction. The point \(A\), which lies on \(l _ { 1 }\), has position vector \(\mathbf { a } = 3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\).
    The point \(C\), which lies on \(l _ { 2 }\), has position vector \(\mathbf { c } = 5 \mathbf { i } - \mathbf { j } - 2 \mathbf { k }\).
    The point \(D\) is such that \(A B C D\) is a parallelogram.
  3. Show that \(| \overrightarrow { A B } | = | \overrightarrow { B C } |\).
  4. Find the position vector of the point \(D\).
AQA C4 2007 January Q6
13 marks Moderate -0.3
6 The points \(A , B\) and \(C\) have coordinates \(( 3 , - 2,4 ) , ( 5,4,0 )\) and \(( 11,6 , - 4 )\) respectively.
    1. Find the vector \(\overrightarrow { B A }\).
    2. Show that the size of angle \(A B C\) is \(\cos ^ { - 1 } \left( - \frac { 5 } { 7 } \right)\).
  1. The line \(l\) has equation \(\mathbf { r } = \left[ \begin{array} { r } 8 \\ - 3 \\ 2 \end{array} \right] + \lambda \left[ \begin{array} { r } 1 \\ 3 \\ - 2 \end{array} \right]\).
    1. Verify that \(C\) lies on \(l\).
    2. Show that \(A B\) is parallel to \(l\).
  2. The quadrilateral \(A B C D\) is a parallelogram. Find the coordinates of \(D\).
AQA C4 2009 June Q7
10 marks Moderate -0.3
7 The points \(A\) and \(B\) have coordinates ( \(3 , - 2,5\) ) and ( \(4,0,1\) ) respectively. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } 6 \\ - 1 \\ 5 \end{array} \right] + \lambda \left[ \begin{array} { r } 2 \\ - 1 \\ 4 \end{array} \right]\).
  1. Find the distance between the points \(A\) and \(B\).
  2. Verify that \(B\) lies on \(l _ { 1 }\).
    (2 marks)
  3. The line \(l _ { 2 }\) passes through \(A\) and has equation \(\mathbf { r } = \left[ \begin{array} { r } 3 \\ - 2 \\ 5 \end{array} \right] + \mu \left[ \begin{array} { r } - 1 \\ 3 \\ - 8 \end{array} \right]\). The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(C\). Show that the points \(A , B\) and \(C\) form an isosceles triangle.
    (6 marks)
AQA Paper 2 2018 June Q14
6 marks Moderate -0.3
14 A quadrilateral has vertices \(A , B , C\) and \(D\) with position vectors given by $$\overrightarrow { O A } = \left[ \begin{array} { l } 3 \\ 5 \\ 1 \end{array} \right] , \overrightarrow { O B } = \left[ \begin{array} { r } - 1 \\ 2 \\ 7 \end{array} \right] , \overrightarrow { O C } = \left[ \begin{array} { l } 0 \\ 7 \\ 6 \end{array} \right] \text { and } \overrightarrow { O D } = \left[ \begin{array} { r } 4 \\ 10 \\ 0 \end{array} \right]$$ 14
  1. Write down the vector \(\overrightarrow { A B }\) 14
  2. Show that \(A B C D\) is a parallelogram, but not a rhombus.