5
\includegraphics[max width=\textwidth, alt={}, center]{b2cefbd6-6e89-495a-9f42-60f76c8c5975-3_1070_754_255_699}
The diagram shows a solid cylinder standing on a horizontal circular base, centre \(O\) and radius 4 units. The line \(B A\) is a diameter and the radius \(O C\) is at \(90 ^ { \circ }\) to \(O A\). Points \(O ^ { \prime } , A ^ { \prime } , B ^ { \prime }\) and \(C ^ { \prime }\) lie on the upper surface of the cylinder such that \(O O ^ { \prime } , A A ^ { \prime } , B B ^ { \prime }\) and \(C C ^ { \prime }\) are all vertical and of length 12 units. The mid-point of \(B B ^ { \prime }\) is \(M\).
Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O O ^ { \prime }\) respectively.
- Express each of the vectors \(\overrightarrow { M O }\) and \(\overrightarrow { M C ^ { \prime } }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Hence find the angle \(O M C ^ { \prime }\).