Forces as vectors

Questions involving forces represented as 3D vectors, asking for resultants, equilibrium conditions, or magnitudes and directions of accelerations.

8 questions · Moderate -0.7

Sort by: Default | Easiest first | Hardest first
OCR MEI M1 2005 January Q3
6 marks Moderate -0.8
3 A particle is in equilibrium when acted on by the forces \(\left( \begin{array} { r } x \\ - 7 \\ z \end{array} \right) , \left( \begin{array} { r } 4 \\ y \\ - 5 \end{array} \right)\) and \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\), where the units are newtons.
  1. Find the values of \(x , y\) and \(z\).
  2. Calculate the magnitude of \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\).
OCR MEI M1 2008 January Q4
7 marks Moderate -0.8
4 Force \(\mathbf { F }\) is \(\left( \begin{array} { l } 4 \\ 1 \\ 2 \end{array} \right) \mathrm { N }\) and force \(\mathbf { G }\) is \(\left( \begin{array} { r } - 6 \\ 2 \\ 4 \end{array} \right) \mathrm { N }\).
  1. Find the resultant of \(\mathbf { F }\) and \(\mathbf { G }\) and calculate its magnitude.
  2. Forces \(\mathbf { F } , 2 \mathbf { G }\) and \(\mathbf { H }\) act on a particle which is in equilibrium. Find \(\mathbf { H }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5211a643-307a-4886-a2e2-c11b28e05216-3_99_841_676_651} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure} A toy car is moving along the straight line \(\mathrm { O } x\), where O is the origin. The time \(t\) is in seconds. At time \(t = 0\) the car is at \(\mathrm { A } , 3 \mathrm {~m}\) from O as shown in Fig. 5. The velocity of the car, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is given by $$v = 2 + 12 t - 3 t ^ { 2 }$$ Calculate the distance of the car from O when its acceleration is zero.
OCR MEI M1 Q2
7 marks Moderate -0.8
2 Force \(\mathbf { F }\) is \(\left( \begin{array} { l } 4 \\ 1 \\ 2 \end{array} \right) \mathrm { N }\) and force \(\mathbf { G }\) is \(\left( \begin{array} { r } - 6 \\ 2 \\ 4 \end{array} \right) \mathrm { N }\).
  1. Find the resultant of \(\mathbf { F }\) and \(\mathbf { G }\) and calculate its magnitude.
  2. Forces \(\mathbf { F }\), \(2 \mathbf { G }\) and \(\mathbf { H }\) act on a particle which is in equilibrium. Find \(\mathbf { H }\).
OCR MEI M1 Q5
6 marks Moderate -0.8
5 A particle is in equilibrium when acted on by the forces \(\left( \begin{array} { r } x \\ - 7 \\ z \end{array} \right) , \left( \begin{array} { r } 4 \\ y \\ - 5 \end{array} \right)\) and \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\), where the units are newtons.
  1. Find the values of \(x , y\) and \(z\).
  2. Calculate the magnitude of \(\left( \begin{array} { r } 5 \\ 4 \\ - 7 \end{array} \right)\).
OCR MEI M1 2011 June Q3
7 marks Moderate -0.8
3 Force \(\mathbf { F }\) is \(\left( \begin{array} { r } - 2 \\ 3 \\ - 4 \end{array} \right) \mathrm { N }\), force \(\mathbf { G }\) is \(\left( \begin{array} { r } - 6 \\ y \\ z \end{array} \right) \mathrm { N }\) and force \(\mathbf { H }\) is \(\left( \begin{array} { r } 3 \\ - 5 \\ - 1 \end{array} \right) \mathrm { N }\).
  1. Given that \(\mathbf { F }\) and \(\mathbf { G }\) act in parallel lines, find \(y\) and \(z\). Forces \(\mathbf { F }\) and \(\mathbf { H }\) are the only forces acting on an object of mass 5 kg .
  2. Calculate the acceleration of the object. Calculate also the magnitude of this acceleration.
OCR MEI M1 2013 June Q3
6 marks Moderate -0.8
3 In this question take \(\boldsymbol { g } = \mathbf { 1 0 }\).
The directions of the unit vectors \(\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right) , \left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 0 \\ 1 \end{array} \right)\) are east, north and vertically upwards.
Forces \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) are given by \(\mathbf { p } = \left( \begin{array} { r } - 1 \\ - 1 \\ 5 \end{array} \right) \mathrm { N } , \mathbf { q } = \left( \begin{array} { r } - 1 \\ - 4 \\ 2 \end{array} \right) \mathrm { N }\) and \(\mathbf { r } = \left( \begin{array} { l } 2 \\ 5 \\ 0 \end{array} \right) \mathrm { N }\).
  1. Find which of \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) has the greatest magnitude.
  2. A particle has mass 0.4 kg . The forces acting on it are \(\mathbf { p } , \mathbf { q } , \mathbf { r }\) and its weight. Find the magnitude of the particle's acceleration and describe the direction of this acceleration.
OCR MEI M1 Q1
6 marks Moderate -0.3
1 In this question take \(\boldsymbol { g } = \mathbf { 1 0 }\).
The directions of the unit vectors \(\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right) , \left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 0 \\ 1 \end{array} \right)\) are east, north and vertically upwards.
Forces \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) are given by \(\mathbf { p } = \left( \begin{array} { r } - 1 \\ - 1 \\ 5 \end{array} \right) \mathrm { N } , \mathbf { q } = \left( \begin{array} { r } - 1 \\ - 4 \\ 2 \end{array} \right) \mathrm { N }\) and \(\mathbf { r } = \left( \begin{array} { l } 2 \\ 5 \\ 0 \end{array} \right) \mathrm { N }\).
  1. Find which of \(\mathbf { p } , \mathbf { q }\) and \(\mathbf { r }\) has the greatest magnitude.
  2. A particle has mass 0.4 kg . The forces acting on it are \(\mathbf { p } , \mathbf { q } , \mathbf { r }\) and its weight. Find the magnitude of the particle's acceleration and describe the direction of this acceleration.
WJEC Unit 4 2018 June Q1
Moderate -0.8
1 \(\mathbf { 0 }\) A particle of mass 2 kg moves under the action of a constant force \(\mathbf { F N }\), where \(\mathbf { F }\) is given by $$\mathbf { F } = - 3 \mathbf { i } + 4 \mathbf { j } - 5 \mathbf { k }$$ a) Find the magnitude of the acceleration of the particle.
b) Given that at time \(t = 0\) seconds, the position vector of the particle is \(2 \mathbf { i } - 7 \mathbf { j } + 9 \mathbf { k }\) and it is moving with velocity \(3 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\), find the position vector of the particle when \(t = 2\) seconds. \section*{END OF PAPER}