Reflection and symmetry

Questions involving reflection of points in lines or finding images under reflection, typically requiring perpendicularity and midpoint conditions.

5 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
Edexcel C34 2014 January Q10
11 marks Challenging +1.2
10. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{aligned} & l _ { 1 } : \mathbf { r } = ( \mathbf { i } + 5 \mathbf { j } + 5 \mathbf { k } ) + \lambda ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \\ & l _ { 2 } : \mathbf { r } = ( 2 \mathbf { j } + 12 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } ) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection.
  2. Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular to each other. The point \(A\), with position vector \(5 \mathbf { i } + 7 \mathbf { j } + 3 \mathbf { k }\), lies on \(l _ { 1 }\) The point \(B\) is the image of \(A\) after reflection in the line \(l _ { 2 }\)
  3. Find the position vector of \(B\). \includegraphics[max width=\textwidth, alt={}, center]{5b698944-41ac-4072-b5e1-c580b7752c39-35_133_163_2604_1786}
Edexcel C4 2008 June Q6
12 marks Challenging +1.2
6. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{array} { l l } l _ { 1 } : & \mathbf { r } = ( - 9 \mathbf { i } + 10 \mathbf { k } ) + \lambda ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } ) \\ l _ { 2 } : & \mathbf { r } = ( 3 \mathbf { i } + \mathbf { j } + 17 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } ) \end{array}$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection.
  2. Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular to each other. The point \(A\) has position vector \(5 \mathbf { i } + 7 \mathbf { j } + 3 \mathbf { k }\).
  3. Show that \(A\) lies on \(l _ { 1 }\). The point \(B\) is the image of \(A\) after reflection in the line \(l _ { 2 }\).
  4. Find the position vector of \(B\).
Edexcel C4 2013 June Q6
12 marks Standard +0.3
6. Relative to a fixed origin \(O\), the point \(A\) has position vector \(21 \mathbf { i } - 17 \mathbf { j } + 6 \mathbf { k }\) and the point \(B\) has position vector \(25 \mathbf { i } - 14 \mathbf { j } + 18 \mathbf { k }\). The line \(l\) has vector equation $$\mathbf { r } = \left( \begin{array} { r } a
b
Edexcel C4 2013 June Q10
Challenging +1.2
10 \end{array} \right) + \lambda \left( \begin{array} { r } 6
c
- 1 \end{array} \right)$$ where \(a , b\) and \(c\) are constants and \(\lambda\) is a parameter.\\ Given that the point \(A\) lies on the line \(l\),
  1. find the value of \(a\). Given also that the vector \(\overrightarrow { A B }\) is perpendicular to \(l\),
  2. find the values of \(b\) and \(c\),
  3. find the distance \(A B\). The image of the point \(B\) after reflection in the line \(l\) is the point \(B ^ { \prime }\).
  4. Find the position vector of the point \(B ^ { \prime }\).\\ 7. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{08f62966-2e63-4542-a10a-c6453a3215e7-10_542_1164_251_477} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 27 \sec ^ { 3 } t , y = 3 \tan t , \quad 0 \leqslant t \leqslant \frac { \pi } { 3 }$$
  5. Find the gradient of the curve \(C\) at the point where \(t = \frac { \pi } { 6 }\)
  6. Show that the cartesian equation of \(C\) may be written in the form $$y = \left( x ^ { \frac { 2 } { 3 } } - 9 \right) ^ { \frac { 1 } { 2 } } , \quad a \leqslant x \leqslant b$$ stating the values of \(a\) and \(b\).\\ (3) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{08f62966-2e63-4542-a10a-c6453a3215e7-10_581_1173_1628_475} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The finite region \(R\) which is bounded by the curve \(C\), the \(x\)-axis and the line \(x = 125\) is shown shaded in Figure 3. This region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  7. Use calculus to find the exact value of the volume of the solid of revolution. 8. In an experiment testing solid rocket fuel, some fuel is burned and the waste products are collected. Throughout the experiment the sum of the masses of the unburned fuel and waste products remains constant. Let \(x\) be the mass of waste products, in kg , at time \(t\) minutes after the start of the experiment. It is known that at time \(t\) minutes, the rate of increase of the mass of waste products, in kg per minute, is \(k\) times the mass of unburned fuel remaining, where \(k\) is a positive constant. The differential equation connecting \(x\) and \(t\) may be written in the form $$\frac { \mathrm { d } x } { \mathrm {~d} t } = k ( M - x ) , \text { where } M \text { is a constant. }$$
  8. Explain, in the context of the problem, what \(\frac { \mathrm { d } x } { \mathrm {~d} t }\) and \(M\) represent. Given that initially the mass of waste products is zero,
  9. solve the differential equation, expressing \(x\) in terms of \(k , M\) and \(t\). Given also that \(x = \frac { 1 } { 2 } M\) when \(t = \ln 4\),
  10. find the value of \(x\) when \(t = \ln 9\), expressing \(x\) in terms of \(M\), in its simplest form.
OCR MEI C4 2012 June Q8
17 marks Standard +0.3
8 With respect to cartesian coordinates Oxyz, a laser beam ABC is fired from the point A(1, 2, 4), and is reflected at point B off the plane with equation \(x + 2 y - 3 z = 0\), as shown in Fig. 8. \(\mathrm { A } ^ { \prime }\) is the point (2, 4, 1), and M is the midpoint of \(\mathrm { AA } ^ { \prime }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9001b0d0-8d06-43f4-8831-23c0d6aef59d-4_563_716_413_635} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { AA } ^ { \prime }\) is perpendicular to the plane \(x + 2 y - 3 z = 0\), and that M lies in the plane. The vector equation of the line AB is \(\mathbf { r } = \left( \begin{array} { l } 1 \\ 2 \\ 4 \end{array} \right) + \lambda \left( \begin{array} { r } 1 \\ - 1 \\ 2 \end{array} \right)\).
  2. Find the coordinates of B , and a vector equation of the line \(\mathrm { A } ^ { \prime } \mathrm { B }\).
  3. Given that \(\mathrm { A } ^ { \prime } \mathrm { BC }\) is a straight line, find the angle \(\theta\).
  4. Find the coordinates of the point where BC crosses the Oxz plane (the plane containing the \(x\) - and \(z\)-axes).