- The line \(l _ { 1 }\) has vector equation \(\mathbf { r } = \left( \begin{array} { r } 5
- 2
4 \end{array} \right) + \lambda \left( \begin{array} { r } 6
3
- 1 \end{array} \right)\), where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) has vector equation \(\mathbf { r } = \left( \begin{array} { r } 10
5
- 3 \end{array} \right) + \mu \left( \begin{array} { l } 3
1
2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Justify, giving reasons in each case, whether the lines \(l _ { 1 }\) and \(l _ { 2 }\) are parallel, intersecting or skew.
(6)