Edexcel C34 2018 January — Question 7

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2018
SessionJanuary
TopicVectors 3D & Lines

7. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{aligned} & l _ { 1 } : \mathbf { r } = ( 13 \mathbf { i } + 15 \mathbf { j } - 8 \mathbf { k } ) + \lambda ( 3 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k } )
& l _ { 2 } : \mathbf { r } = ( 7 \mathbf { i } - 6 \mathbf { j } + 14 \mathbf { k } ) + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k } ) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection, \(B\).
  2. Find the acute angle between the lines \(l _ { 1 }\) and \(l _ { 2 }\) The point \(A\) has position vector \(- 5 \mathbf { i } - 3 \mathbf { j } + 16 \mathbf { k }\)
  3. Show that \(A\) lies on \(l _ { 1 }\) The point \(C\) lies on the line \(l _ { 1 }\) where \(\overrightarrow { A B } = \overrightarrow { B C }\)
  4. Find the position vector of \(C\).
    \section*{"}