Questions (30179 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P3 Specimen Q5
7 marks Standard +0.3
5 The equation of a curve is \(y = \mathrm { e } ^ { - 2 x } \tan x\), for \(0 \leqslant x < \frac { 1 } { 2 } \pi\).
  1. Obtain an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that it can be written in the form \(\mathrm { e } ^ { - 2 x } ( a + b \tan x ) ^ { 2 }\), where \(a\) and \(b\) are constants.
  2. Explain why the gradient of the curve is never negative.
  3. Find the value of \(x\) for which the gradient is least.
CAIE P3 Specimen Q6
8 marks Moderate -0.8
6 The polynomial \(8 x ^ { 3 } + a x ^ { 2 } + b x - 1\), where \(a\) and \(b\) are constants, is denoted by \(\mathrm { p } ( x )\). It is given that \(( x + 1 )\) is a factor of \(\mathrm { p } ( x )\) and that when \(\mathrm { p } ( x )\) is divided by ( \(2 x + 1\) ) the remainder is 1 .
  1. Find the values of \(a\) and \(b\).
  2. When \(a\) and \(b\) have these values, factorise \(\mathrm { p } ( x )\) completely.
CAIE P3 Specimen Q7
9 marks Standard +0.3
7 The points \(A , B\) and \(C\) have position vectors, relative to the origin \(O\), given by $$\overrightarrow { O A } = \left( \begin{array} { l } 1 \\ 2 \\ 0 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { l } 3 \\ 0 \\ 1 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { l } 1 \\ 1 \\ 4 \end{array} \right)$$ The plane \(m\) is perpendicular to \(A B\) and contains the point \(C\).
  1. Find a vector equation for the line passing through \(A\) and \(B\).
  2. Obtain the equation of the plane \(m\), giving your answer in the form \(a x + b y + c z = d\).
  3. The line through \(A\) and \(B\) intersects the plane \(m\) at the point \(N\). Find the position vector of \(N\) and show that \(C N = \sqrt { } ( 13 )\).
CAIE P3 Specimen Q8
9 marks Moderate -0.3
8 The variables \(x\) and \(\theta\) satisfy the differential equation $$\frac { \mathrm { d } x } { \mathrm {~d} \theta } = ( x + 2 ) \sin ^ { 2 } 2 \theta$$ and it is given that \(x = 0\) when \(\theta = 0\). Solve the differential equation and calculate the value of \(x\) when \(\theta = \frac { 1 } { 4 } \pi\), giving your answer correct to 3 significant figures.
CAIE P3 Specimen Q9
10 marks Standard +0.3
9 The complex number \(3 - \mathrm { i }\) is denoted by \(u\). Its complex conjugate is denoted by \(u ^ { * }\).
  1. On an Argand diagram with origin \(O\), show the points \(A , B\) and \(C\) representing the complex numbers \(u , u ^ { * }\) and \(u ^ { * } - u\) respectively. What type of quadrilateral is \(O A B C\) ?
  2. Showing your working and without using a calculator, express \(\frac { u ^ { * } } { u }\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
  3. By considering the argument of \(\frac { u ^ { * } } { u }\), prove that $$\tan ^ { - 1 } \left( \frac { 3 } { 4 } \right) = 2 \tan ^ { - 1 } \left( \frac { 1 } { 3 } \right) .$$ \includegraphics[max width=\textwidth, alt={}, center]{d4a7604c-9e2c-47ef-a496-8697bc88fdd4-18_360_758_260_689} The diagram shows the curve \(y = \frac { x ^ { 2 } } { 1 + x ^ { 3 } }\) for \(x \geqslant 0\), and its maximum point \(M\). The shaded region \(R\) is enclosed by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = p\).
  4. Find the exact value of the \(x\)-coordinate of \(M\).
  5. Calculate the value of \(p\) for which the area of \(R\) is equal to 1 . Give your answer correct to 3 significant figures.
CAIE Further Paper 1 2020 June Q1
6 marks Standard +0.8
1 Let \(a\) be a positive constant.
  1. Sketch the curve with equation \(\mathrm { y } = \frac { \mathrm { ax } } { \mathrm { x } + 7 }\).
  2. Sketch the curve with equation \(y = \left| \frac { a x } { x + 7 } \right|\) and find the set of values of \(x\) for which \(\left| \frac { a x } { x + 7 } \right| > \frac { a } { 2 }\).
CAIE Further Paper 1 2020 June Q2
8 marks Challenging +1.2
2 The cubic equation \(6 \mathrm { x } ^ { 3 } + \mathrm { px } ^ { 2 } - 3 \mathrm { x } - 5 = 0\), where \(p\) is a constant, has roots \(\alpha , \beta , \gamma\).
  1. Find a cubic equation whose roots are \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\).
  2. It is given that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 2 ( \alpha + \beta + \gamma )\).
    1. Find the value of \(p\).
    2. Find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
CAIE Further Paper 1 2020 June Q3
9 marks Standard +0.3
3 The curve \(C\) has equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } } { 2 \mathrm { x } + 1 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the coordinates of the stationary points on \(C\).
  3. Sketch \(C\).
CAIE Further Paper 1 2020 June Q4
10 marks Standard +0.8
4
  1. By first expressing \(\frac { 1 } { r ^ { 2 } - 1 }\) in partial fractions, show that $$\sum _ { r = 2 } ^ { n } \frac { 1 } { r ^ { 2 } - 1 } = \frac { 3 } { 4 } - \frac { a n + b } { 2 n ( n + 1 ) }$$ where \(a\) and \(b\) are integers to be found.
  2. Deduce the value of \(\sum _ { r = 2 } ^ { \infty } \frac { 1 } { r ^ { 2 } - 1 }\).
  3. Find the limit, as \(n \rightarrow \infty\), of \(\sum _ { r = n + 1 } ^ { 2 n } \frac { n } { r ^ { 2 } - 1 }\).
CAIE Further Paper 1 2020 June Q5
12 marks Challenging +1.2
5 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 3 \mathbf { i } + 3 \mathbf { k } + \lambda ( \mathbf { i } + 4 \mathbf { j } + 4 \mathbf { k } )\) and \(\mathbf { r } = 3 \mathbf { i } - 5 \mathbf { j } - 6 \mathbf { k } + \mu ( 5 \mathbf { j } + 6 \mathbf { k } )\) respectively.
  1. Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
    The plane \(\Pi\) contains \(l _ { 1 }\) and is parallel to the vector \(\mathbf { i } + \mathbf { k }\).
  2. Find the equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
  3. Find the acute angle between \(l _ { 2 }\) and \(\Pi\).
CAIE Further Paper 1 2020 June Q6
13 marks Standard +0.3
6 Let \(\mathbf { A } = \left( \begin{array} { l l } 2 & 0 \\ 1 & 1 \end{array} \right)\).
  1. The transformation in the \(x - y\) plane represented by \(\mathbf { A } ^ { - 1 }\) transforms a triangle of area \(30 \mathrm {~cm} ^ { 2 }\) into a triangle of area \(d \mathrm {~cm} ^ { 2 }\). Find the value of \(d\).
  2. Prove by mathematical induction that, for all positive integers \(n\), $$\mathbf { A } ^ { n } = \left( \begin{array} { c c } 2 ^ { n } & 0 \\ 2 ^ { n } - 1 & 1 \end{array} \right)$$
  3. The line \(y = 2 x\) is invariant under the transformation in the \(x - y\) plane represented by \(\mathbf { A } ^ { n } \mathbf { B }\), where \(\mathbf { B } = \left( \begin{array} { r l } 1 & 0 \\ 33 & 0 \end{array} \right)\). Find the value of \(n\).
CAIE Further Paper 1 2020 June Q7
17 marks Challenging +1.2
7 The curve \(C _ { 1 }\) has polar equation \(r = \theta \cos \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. The point on \(C _ { 1 }\) furthest from the line \(\theta = \frac { 1 } { 2 } \pi\) is denoted by \(P\). Show that, at \(P\), $$2 \theta \tan \theta - 1 = 0$$ and verify that this equation has a root between 0.6 and 0.7 .
    The curve \(C _ { 2 }\) has polar equation \(r = \theta \sin \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the pole, denoted by \(O\), and at another point \(Q\).
  2. Find the polar coordinates of \(Q\), giving your answers in exact form.
  3. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
  4. Find, in terms of \(\pi\), the area of the region bounded by the arc \(O Q\) of \(C _ { 1 }\) and the arc \(O Q\) of \(C _ { 2 }\). [7]
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 1 2020 June Q1
7 marks Standard +0.3
1 The cubic equation \(7 x ^ { 3 } + 3 x ^ { 2 } + 5 x + 1 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Find a cubic equation whose roots are \(\alpha ^ { - 1 } , \beta ^ { - 1 } , \gamma ^ { - 1 }\).
  2. Find the value of \(\alpha ^ { - 2 } + \beta ^ { - 2 } + \gamma ^ { - 2 }\).
  3. Find the value of \(\alpha ^ { - 3 } + \beta ^ { - 3 } + \gamma ^ { - 3 }\).
CAIE Further Paper 1 2020 June Q2
7 marks Standard +0.3
2 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } = 1\) and \(\mathrm { u } _ { \mathrm { n } + 1 } = 2 \mathrm { u } _ { \mathrm { n } } + 1\) for \(n \geqslant 1\).
  1. Prove by induction that \(u _ { n } = 2 ^ { n } - 1\) for all positive integers \(n\).
  2. Deduce that \(\mathrm { u } _ { 2 \mathrm { n } }\) is divisible by \(\mathrm { u } _ { \mathrm { n } }\) for \(n \geqslant 1\).
CAIE Further Paper 1 2020 June Q3
9 marks Challenging +1.2
3 Let \(S _ { n } = 2 ^ { 2 } + 6 ^ { 2 } + 10 ^ { 2 } + \ldots + ( 4 n - 2 ) ^ { 2 }\).
  1. Use standard results from the List of Formulae (MF19) to show that \(S _ { n } = \frac { 4 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)\).
  2. Express \(\frac { \mathrm { n } } { \mathrm { S } _ { \mathrm { n } } }\) in partial fractions and find \(\sum _ { \mathrm { n } = 1 } ^ { \mathrm { N } } \frac { \mathrm { n } } { \mathrm { S } _ { \mathrm { n } } }\) in terms of \(N\).
  3. Deduce the value of \(\sum _ { n = 1 } ^ { \infty } \frac { n } { S _ { n } }\).
CAIE Further Paper 1 2020 June Q4
11 marks Challenging +1.2
4 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } k & 0 & 2 \\ 0 & - 1 & - 1 \\ 1 & 1 & - k \end{array} \right)$$ where \(k\) is a real constant.
  1. Show that \(\mathbf { A }\) is non-singular.
    The matrices \(\mathbf { B }\) and \(\mathbf { C }\) are given by $$\mathbf { B } = \left( \begin{array} { r r } 0 & - 3 \\ - 1 & 3 \\ 0 & 0 \end{array} \right) \text { and } \mathbf { C } = \left( \begin{array} { r r r } - 3 & - 1 & 1 \\ 1 & 1 & 2 \end{array} \right)$$ It is given that \(\mathbf { C A B } = \left( \begin{array} { l l } - 2 & - \frac { 3 } { 2 } \\ - 1 & - \frac { 3 } { 2 } \end{array} \right)\).
  2. Find the value of \(k\).
  3. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { C A B }\).
CAIE Further Paper 1 2020 June Q5
11 marks Challenging +1.8
5 The curve \(C\) has polar equation \(r = \operatorname { atan } \theta\), where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  1. Sketch \(C\) and state the greatest distance of a point on \(C\) from the pole.
  2. Find the exact value of the area of the region bounded by \(C\) and the half-line \(\theta = \frac { 1 } { 4 } \pi\).
  3. Show that \(C\) has Cartesian equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } } { \sqrt { \mathrm { a } ^ { 2 } - \mathrm { x } ^ { 2 } } }\).
  4. Using your answer to part (b), deduce the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } a \sqrt { 2 } } \frac { x ^ { 2 } } { \sqrt { a ^ { 2 } - x ^ { 2 } } } d x\).
CAIE Further Paper 1 2020 June Q6
15 marks Challenging +1.2
6 The curve \(C\) has equation \(\mathrm { y } = \frac { 10 + \mathrm { x } - 2 \mathrm { x } ^ { 2 } } { 2 \mathrm { x } - 3 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) has no turning points.
  3. Sketch \(C\), stating the coordinates of the intersections with the axes.
  4. Sketch the curve with equation \(y = \left| \frac { 10 + x - 2 x ^ { 2 } } { 2 x - 3 } \right|\) and find in exact form the set of values of \(x\) for which \(\left| \frac { 10 + x - 2 x ^ { 2 } } { 2 x - 3 } \right| < 4\).
CAIE Further Paper 1 2020 June Q7
15 marks Challenging +1.2
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = - 5 \mathbf { j } + \lambda ( 5 \mathbf { i } + 2 \mathbf { k } )\) and \(\mathbf { r } = 4 \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } + \mu ( \mathbf { j } + \mathbf { k } )\) respectively. The plane \(\Pi\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\).
  1. Find the equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the distance between \(l _ { 2 }\) and \(\Pi\).
    The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Show that \(P\) has position vector \(\frac { 55 } { 27 } \mathbf { i } - 5 \mathbf { j } + \frac { 22 } { 27 } \mathbf { k }\) and state a vector equation for \(P Q\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 1 2021 June Q1
6 marks Standard +0.3
1 Prove by mathematical induction that \(2 ^ { 4 n } + 31 ^ { n } - 2\) is divisible by 15 for all positive integers \(n\).
CAIE Further Paper 1 2021 June Q2
9 marks Challenging +1.2
2
  1. Use standard results from the List of formulae (MF19) to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \left( 1 - \mathrm { r } - \mathrm { r } ^ { 2 } \right)\) in terms of \(n\),
    simplifying your answer. simplifying your answer.
  2. Show that $$\frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) } = \frac { r + 1 } { ( r + 1 ) ^ { 2 } + 1 } - \frac { r } { r ^ { 2 } + 1 }$$ and hence use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 - r - r ^ { 2 } } { \left( r ^ { 2 } + 2 r + 2 \right) \left( r ^ { 2 } + 1 \right) }\).
CAIE Further Paper 1 2021 June Q3
9 marks Challenging +1.2
3 The equation \(x ^ { 4 } - 2 x ^ { 3 } - 1 = 0\) has roots \(\alpha , \beta , \gamma , \delta\).
  1. Find a quartic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 } , \delta ^ { 3 }\) and state the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 }\). [4]
  2. Find the value of \(\frac { 1 } { \alpha ^ { 3 } } + \frac { 1 } { \beta ^ { 3 } } + \frac { 1 } { \gamma ^ { 3 } } + \frac { 1 } { \delta ^ { 3 } }\).
  3. Find the value of \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 }\).
CAIE Further Paper 1 2021 June Q4
14 marks Standard +0.8
4 The matrix \(\mathbf { M }\) represents the sequence of two transformations in the \(x - y\) plane given by a rotation of \(60 ^ { \circ }\) anticlockwise about the origin followed by a one-way stretch in the \(x\)-direction, scale factor \(d ( d \neq 0 )\).
  1. Find \(\mathbf { M }\) in terms of \(d\).
  2. The unit square in the \(x - y\) plane is transformed by \(\mathbf { M }\) onto a parallelogram of area \(\frac { 1 } { 2 } d ^ { 2 }\) units \({ } ^ { 2 }\). Show that \(d = 2\).
    The matrix \(\mathbf { N }\) is such that \(\mathbf { M N } = \left( \begin{array} { l l } 1 & 1 \\ \frac { 1 } { 2 } & \frac { 1 } { 2 } \end{array} \right)\).
  3. Find \(\mathbf { N }\).
  4. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { M N }\).
CAIE Further Paper 1 2021 June Q5
10 marks Challenging +1.8
5 The curve \(C\) has polar equation \(r = \operatorname { acot } \left( \frac { 1 } { 3 } \pi - \theta \right)\), where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 6 } \pi\). It is given that the greatest distance of a point on \(C\) from the pole is \(2 \sqrt { 3 }\).
  1. Sketch \(C\) and show that \(a = 2\).
  2. Find the exact value of the area of the region bounded by \(C\), the initial line and the half-line \(\theta = \frac { 1 } { 6 } \pi\).
  3. Show that \(C\) has Cartesian equation \(2 ( x + y \sqrt { 3 } ) = ( x \sqrt { 3 } - y ) \sqrt { x ^ { 2 } + y ^ { 2 } }\).
CAIE Further Paper 1 2021 June Q6
12 marks Challenging +1.2
6 Let \(t\) be a positive constant.
The line \(l _ { 1 }\) passes through the point with position vector \(t \mathbf { i } + \mathbf { j }\) and is parallel to the vector \(- 2 \mathbf { i } - \mathbf { j }\). The line \(l _ { 2 }\) passes through the point with position vector \(\mathbf { j } + t \mathbf { k }\) and is parallel to the vector \(- 2 \mathbf { j } + \mathbf { k }\). It is given that the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\) is \(\sqrt { \mathbf { 2 1 } }\).
  1. Find the value of \(t\).
    The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\).
  2. Write down an equation of \(\Pi _ { 1 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\).
    The plane \(\Pi _ { 2 }\) has Cartesian equation \(5 x - 6 y + 7 z = 0\).
  3. Find the acute angle between \(l _ { 2 }\) and \(\Pi _ { 2 }\).
  4. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).