CAIE Further Paper 1 2020 June — Question 4

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionJune
TopicInvariant lines and eigenvalues and vectors

4 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } k & 0 & 2
0 & - 1 & - 1
1 & 1 & - k \end{array} \right)$$ where \(k\) is a real constant.
  1. Show that \(\mathbf { A }\) is non-singular.
    The matrices \(\mathbf { B }\) and \(\mathbf { C }\) are given by $$\mathbf { B } = \left( \begin{array} { r r } 0 & - 3
    - 1 & 3
    0 & 0 \end{array} \right) \text { and } \mathbf { C } = \left( \begin{array} { r r r } - 3 & - 1 & 1
    1 & 1 & 2 \end{array} \right)$$ It is given that \(\mathbf { C A B } = \left( \begin{array} { l l } - 2 & - \frac { 3 } { 2 }
    - 1 & - \frac { 3 } { 2 } \end{array} \right)\).
  2. Find the value of \(k\).
  3. Find the equations of the invariant lines, through the origin, of the transformation in the \(x - y\) plane represented by \(\mathbf { C A B }\).