5 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 3 \mathbf { i } + 3 \mathbf { k } + \lambda ( \mathbf { i } + 4 \mathbf { j } + 4 \mathbf { k } )\) and \(\mathbf { r } = 3 \mathbf { i } - 5 \mathbf { j } - 6 \mathbf { k } + \mu ( 5 \mathbf { j } + 6 \mathbf { k } )\) respectively.
- Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
The plane \(\Pi\) contains \(l _ { 1 }\) and is parallel to the vector \(\mathbf { i } + \mathbf { k }\). - Find the equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).
- Find the acute angle between \(l _ { 2 }\) and \(\Pi\).