3 Let \(S _ { n } = 2 ^ { 2 } + 6 ^ { 2 } + 10 ^ { 2 } + \ldots + ( 4 n - 2 ) ^ { 2 }\).
- Use standard results from the List of Formulae (MF19) to show that \(S _ { n } = \frac { 4 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)\).
- Express \(\frac { \mathrm { n } } { \mathrm { S } _ { \mathrm { n } } }\) in partial fractions and find \(\sum _ { \mathrm { n } = 1 } ^ { \mathrm { N } } \frac { \mathrm { n } } { \mathrm { S } _ { \mathrm { n } } }\) in terms of \(N\).
- Deduce the value of \(\sum _ { n = 1 } ^ { \infty } \frac { n } { S _ { n } }\).