Questions (30808 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FD2 2022 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cea07472-f93b-4a7b-b362-89fb8c0af4a9-04_931_1312_219_379} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a capacitated, directed network of pipes. The uncircled number on each arc represents the capacity of the corresponding pipe. The numbers in circles represent an initial flow.
  1. List the saturated arcs.
  2. State the value of the initial flow.
  3. Explain why arc FT cannot be full to capacity.
  4. State the capacity of cut \(C _ { 1 }\) and the capacity of cut \(C _ { 2 }\)
  5. By inspection find one flow-augmenting route to increase the flow by three units. You must state your route.
  6. Prove that, once the flow-augmenting route found in part (e) has been applied, the flow is maximal.
Edexcel FD2 2022 June Q5
5. A standard transportation problem is described in the linear programming formulation below. Let \(X _ { i j }\) be the number of units transported from \(i\) to \(j\)
where \(i \in \{ \mathrm {~A} , \mathrm {~B} , \mathrm { C } , \mathrm { D } \}\) $$j \in \{ \mathrm { R } , \mathrm {~S} , \mathrm {~T} \} \text { and } x _ { i j } \geqslant 0$$ Minimise \(P = 23 x _ { \mathrm { AR } } + 17 x _ { \mathrm { AS } } + 24 x _ { \mathrm { AT } } + 15 x _ { \mathrm { BR } } + 29 x _ { \mathrm { BS } } + 32 x _ { \mathrm { BT } }\) $$+ 25 x _ { \mathrm { CR } } + 25 x _ { \mathrm { CS } } + 27 x _ { \mathrm { CT } } + 19 x _ { \mathrm { DR } } + 20 x _ { \mathrm { DS } } + 25 x _ { \mathrm { DT } }$$ subject to $$\begin{aligned} & \sum x _ { \mathrm { A } j } \leqslant 34
& \sum x _ { \mathrm { B } j } \leqslant 27
& \sum x _ { \mathrm { C } j } \leqslant 41
& \sum x _ { \mathrm { D } j } \leqslant 18
& \sum x _ { i \mathrm { R } } \geqslant 44
& \sum x _ { i \mathrm {~S} } \geqslant 37
& \sum x _ { i \mathrm {~T} } \geqslant k \end{aligned}$$ Given that the problem is balanced,
  1. state the value of \(k\).
  2. Explain precisely what the constraint \(\sum x _ { i \mathrm { R } } \geqslant 44\) means in the transportation problem.
  3. Use the north-west corner method to obtain the cost of an initial solution to this transportation problem.
  4. Perform one iteration of the stepping-stone method to obtain an improved solution. You must make your method clear by showing the route and the
    • shadow costs
    • improvement indices
    • entering cell and exiting cell.
Edexcel FD2 2022 June Q6
  1. Bernie makes garden sheds. He can build up to four sheds each month.
If he builds more than two sheds in any one month, he must hire an additional worker at a cost of \(\pounds 250\) for that month. In any month in which sheds are made, the overhead costs are \(\pounds 35\) for each shed made that month. A maximum of three sheds can be held in storage at the end of any one month, at a cost of \(\pounds 80\) per shed per month. Sheds must be delivered at the end of the month.
The order schedule for sheds is
MonthJanuaryFebruaryMarchAprilMay
Number ordered13352
There are no sheds in storage at the beginning of January and Bernie plans to have no sheds left in storage after the May delivery. Use dynamic programming to determine the production schedule that minimises the costs given above. Complete the working in the table provided in the answer book and state the minimum cost.
Edexcel FD2 2022 June Q7
7.
\multirow{2}{*}{}Player B
Option WOption XOption YOption Z
\multirow{3}{*}{Player A}Option Q43-1-2
Option R-35-4\(k\)
Option S-163-3
A two person zero-sum game is represented by the pay-off matrix for player A shown above. It is given that \(k\) is an integer.
  1. Show that Q is the play-safe option for player A regardless of the value of \(k\). Given that Z is the play-safe option for player B ,
  2. determine the range of possible values of \(k\). You must make your working clear.
  3. Explain why player B should never play option X. You must make your reasoning clear. Player A intends to make a random choice between options \(\mathrm { Q } , \mathrm { R }\) and S , choosing option Q with probability \(p _ { 1 }\), option R with probability \(p _ { 2 }\) and option S with probability \(p _ { 3 }\) Player A wants to find the optimal values of \(p _ { 1 } , p _ { 2 }\) and \(p _ { 3 }\) using the Simplex algorithm.
    Given that \(k > - 4\), player A formulates the following objective function for the corresponding linear program. $$\text { Maximise } P = V \text {, where } V = \text { the value of the original game } + 4$$
    1. Formulate the constraints of the linear programming problem for player A. You should write the constraints as equations.
    2. Write down an initial Simplex tableau, making your variables clear. The Simplex algorithm is used to solve the linear programming problem. It is given that in the final Simplex tableau the optimal value of \(p _ { 1 } = \frac { 7 } { 37 }\), the optimal value of \(p _ { 2 } = \frac { 17 } { 37 }\) and all the slack variables are zero.
  4. Determine the value of \(k\), making your method clear.
Edexcel FD2 2022 June Q8
8. The owner of a new company models the number of customers that the company will have at the end of each month. The owner assumes that
  • a constant proportion, \(p\) (where \(0 < p < 1\) ), of the previous month's customers will be retained for the next month
  • a constant number of new customers, \(k\), will be added each month.
Let \(u _ { n }\) (where \(n \geqslant 1\) ) represent the number of customers that the company will have at the end of \(n\) months. The company has 5000 customers at the end of the first month.
  1. By setting up a first order recurrence relation for \(u _ { n + 1 }\) in terms of \(u _ { n }\), determine an expression for \(u _ { n }\) in terms of \(n , p\) and \(k\). The owner believes that \(95 \%\) of the previous month’s customers will be retained each month and that there will be 10000 new customers each month. According to the model, the company will first have at least 135000 customers by the end of the \(m\) th month.
  2. Using logarithms, determine the value of \(m\). Please check the examination details below before entering your candidate information \section*{Further Mathematics} Advanced
    PAPER 4D: Decision Mathematics 2 \section*{Answer Book} Do not return the question paper with the answer book.
    1.
    1234
    A32453448
    B37395046
    C46444042
    D43454852
    You may not need to use all of these tables.
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    VALV SIHI NI IIIIIM ION OC
    VIAV SIUL NI JAIIM ION OC
    VIAV SIHI NI III IM ION OC
    1234
    A
    B
    C
    D
    1234
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    1234
    A
    B
    C
    D
    2.
    VAMV SIHI NI IIIHM ION OOVIAV SIHI NI JIIIM I ON OCVJYV SIHI NI JIIIM ION OC
    3. 4. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cea07472-f93b-4a7b-b362-89fb8c0af4a9-16_936_1317_255_376} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} 5.
  3. \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    \(R\)\(S\)\(T\)
    \(A\)
    \(B\)
    \(C\)
    \(D\)
    6.
    StageStateActionDestinationValue
    May200160
    11080 + 35
    02070
    StageStateActionDestinationValue
    MonthJanuaryFebruaryMarchAprilMay
    Number made
    Minimum cost: \(\_\_\_\_\)
    7. Player A \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Player B}
    Option WOption XOption YOption Z
    Option Q43-1-2
    Option R-35-4\(k\)
    Option S-163-3
    \end{table} The tableau for (d)(ii) can be found at the bottom of page 16
    b.v.â–¡â–¡â–¡â–¡Value
    \includegraphics[max width=\textwidth, alt={}]{cea07472-f93b-4a7b-b362-89fb8c0af4a9-24_56_77_2348_182}â–¡â–¡
    P
    8.
OCR Further Pure Core AS 2019 June Q1
1 You are given that \(z = 3 - 4 \mathrm { i }\).
  1. Find
    • \(| z |\),
    • \(\arg ( z )\),
    • \(Z ^ { * }\).
    On an Argand diagram the complex number \(w\) is represented by the point \(A\) and \(w ^ { * }\) is represented by the point \(B\).
  2. Describe the geometrical relationship between the points \(A\) and \(B\).
OCR Further Pure Core AS 2019 June Q2
2 Matrices \(\mathbf { P }\) and \(\mathbf { Q }\) are given by \(\mathbf { P } = \left( \begin{array} { c c c } 1 & k & 0
- 2 & 1 & 3 \end{array} \right)\) and \(\mathbf { Q } = ( ( 1 + k ) - 1 )\) where \(k\) is a constant.
Exactly one of statements A and B is true.
Statement A: \(\quad \mathbf { P }\) and \(\mathbf { Q }\) (in that order) are conformable for multiplication.
Statement B: \(\quad \mathbf { Q }\) and \(\mathbf { P }\) (in that order) are conformable for multiplication.
  1. State, with a reason, which one of A and B is true.
  2. Find either \(\mathbf { P Q }\) or \(\mathbf { Q P }\) in terms of \(k\).
OCR Further Pure Core AS 2019 June Q3
3 The position vector of point \(A\) is \(\mathbf { a } = - 9 \mathbf { i } + 2 \mathbf { j } + 6 \mathbf { k }\).
The line \(l\) passes through \(A\) and is perpendicular to \(\mathbf { a }\).
  1. Determine the shortest distance between the origin, \(O\), and \(l\).
    \(l\) is also perpendicular to the vector \(\mathbf { b }\) where \(\mathbf { b } = - 2 \mathbf { i } + \mathbf { j } + \mathbf { k }\).
  2. Find a vector which is perpendicular to both \(\mathbf { a }\) and \(\mathbf { b }\).
  3. Write down an equation of \(l\) in vector form.
    \(P\) is a point on \(l\) such that \(P A = 2 O A\).
  4. Find angle \(P O A\) giving your answer to 3 significant figures.
    \(C\) is a point whose position vector, \(\mathbf { c }\), is given by \(\mathbf { c } = p \mathbf { a }\) for some constant \(p\). The line \(m\) passes through \(C\) and has equation \(\mathbf { r } = \mathbf { c } + \mu \mathbf { b }\). The point with position vector \(9 \mathbf { i } + 8 \mathbf { j } - 12 \mathbf { k }\) lies on \(m\).
  5. Find the value of \(p\).
OCR Further Pure Core AS 2019 June Q4
4 In this question you must show detailed reasoning. You are given that \(\mathrm { f } ( \mathrm { z } ) = 4 \mathrm { z } ^ { 4 } - 12 \mathrm { z } ^ { 3 } + 41 \mathrm { z } ^ { 2 } - 128 \mathrm { z } + 185\) and that \(2 + \mathrm { i }\) is a root of the equation \(f ( z ) = 0\).
  1. Express \(\mathrm { f } ( \mathrm { z } )\) as the product of two quadratic factors with integer coefficients.
  2. Solve \(f ( z ) = 0\). Two loci on an Argand diagram are defined by \(C _ { 1 } = \left\{ z : | z | = r _ { 1 } \right\}\) and \(C _ { 2 } = \left\{ z : | z | = r _ { 2 } \right\}\) where \(r _ { 1 } > r _ { 2 }\). You are given that two of the points representing the roots of \(\mathrm { f } ( \mathrm { z } ) = 0\) are on \(C _ { 1 }\) and two are on \(C _ { 2 } . R\) is the region on the Argand diagram between \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Find the exact area of \(R\).
  4. \(\omega\) is the sum of all the roots of \(\mathrm { f } ( \mathrm { z } ) = 0\). Determine whether or not the point on the Argand diagram which represents \(\omega\) lies in \(R\).
OCR Further Pure Core AS 2019 June Q5
5 In this question you must show detailed reasoning. You are given that \(\alpha , \beta\) and \(\gamma\) are the roots of the equation \(5 x ^ { 3 } - 2 x ^ { 2 } + 3 x + 1 = 0\).
  1. Find the value of \(\alpha ^ { 2 } \beta ^ { 2 } + \beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 }\).
  2. Find a cubic equation whose roots are \(\alpha ^ { 2 } , \beta ^ { 2 }\) and \(\gamma ^ { 2 }\) giving your answer in the form \(a x ^ { 3 } + b x ^ { 2 } + c x + d = 0\) where \(a , b , c\) and \(d\) are integers.
OCR Further Pure Core AS 2019 June Q6
6 A transformation T is represented by the matrix \(\mathbf { T }\) where \(\mathbf { T } = \left( \begin{array} { c c } x ^ { 2 } + 1 & - 4
3 - 2 x ^ { 2 } & x ^ { 2 } + 5 \end{array} \right)\). A quadrilateral \(Q\), whose area is 12 units, is transformed by T to \(Q ^ { \prime }\). Find the smallest possible value of the area of \(Q ^ { \prime }\).
OCR Further Pure Core AS 2019 June Q7
7 A transformation A is represented by the matrix \(\mathbf { A }\) where \(\mathbf { A } = \left( \begin{array} { c c c } - 1 & x & 2
7 - x & - 6 & 1
5 & - 5 x & 2 x \end{array} \right)\).
The tetrahedron \(H\) has vertices at \(O , P , Q\) and \(R\). The volume of \(H\) is 6 units.
\(P ^ { \prime } , Q ^ { \prime } , R ^ { \prime }\) and \(H ^ { \prime }\) are the images of \(P , Q , R\) and \(H\) under A .
  1. In the case where \(x = 5\)
    • find the volume of \(H ^ { \prime }\),
    • determine whether A preserves the orientation of \(H\).
    • Find the values of \(x\) for which \(O , P ^ { \prime } , Q ^ { \prime }\) and \(R ^ { \prime }\) are coplanar (i.e. the four points lie in the same plane).
OCR Further Pure Core AS 2019 June Q8
8 In this question you must show detailed reasoning. \(\mathbf { M }\) is the matrix \(\left( \begin{array} { l l } 1 & 6
0 & 2 \end{array} \right)\).
Prove that \(\mathbf { M } ^ { n } = \left( \begin{array} { c c } 1 & 3 \left( 2 ^ { n + 1 } - 2 \right)
0 & 2 ^ { n } \end{array} \right)\), for any positive integer \(n\). \section*{END OF QUESTION PAPER}
OCR Further Pure Core AS 2023 June Q1
1 The roots of the equation \(4 x ^ { 4 } - 2 x ^ { 3 } - 3 x + 2 = 0\) are \(\alpha , \beta , \gamma\) and \(\delta\). By using a suitable substitution, find a quartic equation whose roots are \(\alpha + 2 , \beta + 2 , \gamma + 2\) and \(\delta + 2\) giving your answer in the form \(a t ^ { 4 } + b t ^ { 3 } + c t ^ { 2 } + d t + e = 0\), where \(a , b , c , d\), and \(e\) are integers.
OCR Further Pure Core AS 2023 June Q2
2 The lines \(L _ { 1 }\) and \(L _ { 2 }\) have the following equations.
\(L _ { 1 } : \mathbf { r } = \left( \begin{array} { c } - 5
6
15 \end{array} \right) + \lambda \left( \begin{array} { c } 5
- 2
- 2 \end{array} \right)\)
\(L _ { 2 } : \mathbf { r } = \left( \begin{array} { c } 24
1
- 5 \end{array} \right) + \mu \left( \begin{array} { c } 3
1
- 4 \end{array} \right)\)
  1. Show that \(L _ { 1 }\) and \(L _ { 2 }\) intersect, giving the position vector of the point of intersection.
  2. Find the equation of the line which intersects \(L _ { 1 }\) and \(L _ { 2 }\) and is perpendicular to both. Give your answer in cartesian form.
OCR Further Pure Core AS 2023 June Q3
3 In this question you must show detailed reasoning. In this question the principal argument of a complex number lies in the interval \([ 0,2 \pi )\).
Complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are defined by \(z _ { 1 } = 3 + 4 \mathrm { i }\) and \(z _ { 2 } = - 5 + 12 \mathrm { i }\).
  1. Determine \(z _ { 1 } z _ { 2 }\), giving your answer in the form \(a + b \mathrm { i }\).
  2. Express \(z _ { 2 }\) in modulus-argument form.
  3. Verify, by direct calculation, that \(\arg \left( z _ { 1 } z _ { 2 } \right) = \arg \left( z _ { 1 } \right) + \arg \left( z _ { 2 } \right)\).
OCR Further Pure Core AS 2023 June Q4
4 The vector \(\mathbf { p }\), all of whose components are positive, is given by \(\mathbf { p } = \left( \begin{array} { c } a ^ { 2 }
a - 5
26 \end{array} \right)\) where \(a\) is a constant.
You are given that \(\mathbf { p }\) is perpendicular to the vector \(\left( \begin{array} { c } 2
6
- 3 \end{array} \right)\).
Determine the value of \(a\).
OCR Further Pure Core AS 2023 June Q5
5 In this question you must show detailed reasoning. The roots of the equation \(5 x ^ { 2 } - 3 x + 12 = 0\) are \(\alpha\) and \(\beta\). By considering the symmetric functions of the roots, \(\alpha + \beta\) and \(\alpha \beta\), determine the exact value of \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } }\).
OCR Further Pure Core AS 2023 June Q6
6 Prove by induction that \(4 \times 8 ^ { n } + 66\) is divisible by 14 for all integers \(n \geqslant 0\).
OCR Further Pure Core AS 2023 June Q7
7 In this question you must show detailed reasoning. Matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { c c c } a & - 6 & a - 3
a + 9 & a & 4
0 & - 13 & a - 1 \end{array} \right)\) where \(a\) is a constant.
Find all possible values of \(a\) for which \(\operatorname { det } \mathbf { A }\) has the same value as it has when \(a = 2\).
OCR Further Pure Core AS 2023 June Q8
8
  1. Solve the equation \(\omega + 2 + 7 \mathrm { i } = 3 \omega ^ { * } - \mathrm { i }\).
  2. Prove algebraically that, for non-zero \(z , z = - z ^ { * }\) if and only if \(z\) is purely imaginary.
  3. The complex numbers \(z\) and \(z ^ { * }\) are represented on an Argand diagram by the points \(A\) and \(B\) respectively.
    1. State, for any \(z\), the single transformation which transforms \(A\) to \(B\).
    2. Use a geometric argument to prove that \(z = z ^ { * }\) if and only if \(z\) is purely real.
OCR Further Pure Core AS 2023 June Q9
9 Matrix \(\mathbf { R }\) is given by \(\mathbf { R } = \left( \begin{array} { c c c } a & 0 & - b
0 & 1 & 0
b & 0 & a \end{array} \right)\) where \(a\) and \(b\) are constants.
  1. Find \(\mathbf { R } ^ { 2 }\) in terms of \(a\) and \(b\). The constants \(a\) and \(b\) are given by \(a = \frac { \sqrt { 2 } } { 4 } ( \sqrt { 3 } + 1 )\) and \(b = \frac { \sqrt { 2 } } { 4 } ( \sqrt { 3 } - 1 )\).
  2. By determining exact expressions for \(a b\) and \(a ^ { 2 } - b ^ { 2 }\) and using the result from part (a), show that \(\mathbf { R } ^ { 2 } = k \left( \begin{array} { c c c } \sqrt { 3 } & 0 & - 1
    0 & 2 & 0
    1 & 0 & \sqrt { 3 } \end{array} \right)\) where \(k\) is a real number whose value is to be determined.
  3. Find \(\mathbf { R } ^ { 6 } , \mathbf { R } ^ { 12 }\) and \(\mathbf { R } ^ { 24 }\).
  4. Describe fully the transformation represented by \(\mathbf { R }\). \section*{END OF QUESTION PAPER}
OCR Further Pure Core AS 2021 November Q1
1 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have the following equations. $$\begin{aligned} & l _ { 1 } : \mathbf { r } = \left( \begin{array} { r } 8
- 11
- 2 \end{array} \right) + \lambda \left( \begin{array} { r } - 2
5
3 \end{array} \right)
& l _ { 2 } : \mathbf { r } = \left( \begin{array} { r } - 6
11
8 \end{array} \right) + \mu \left( \begin{array} { r } - 3
1
- 1 \end{array} \right) \end{aligned}$$
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  2. Write down the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
OCR Further Pure Core AS 2021 November Q2
2 The equation \(2 x ^ { 3 } + 3 x ^ { 2 } - 2 x + 5 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
Use a substitution to find a cubic equation with integer coefficients whose roots are \(\alpha + 1 , \beta + 1\) and \(\gamma + 1\).
OCR Further Pure Core AS 2021 November Q3
3 In this question you must show detailed reasoning.
The equation \(x ^ { 4 } - 7 x ^ { 3 } - 2 x ^ { 2 } + 218 x - 1428 = 0\) has a root \(3 - 5 i\).
Find the other three roots of this equation.