| Exam Board | OCR |
| Module | Further Pure Core AS (Further Pure Core AS) |
| Year | 2019 |
| Session | June |
| Topic | Matrices |
8 In this question you must show detailed reasoning.
\(\mathbf { M }\) is the matrix \(\left( \begin{array} { l l } 1 & 6
0 & 2 \end{array} \right)\).
Prove that \(\mathbf { M } ^ { n } = \left( \begin{array} { c c } 1 & 3 \left( 2 ^ { n + 1 } - 2 \right)
0 & 2 ^ { n } \end{array} \right)\), for any positive integer \(n\).
\section*{END OF QUESTION PAPER}