2 Matrices \(\mathbf { P }\) and \(\mathbf { Q }\) are given by \(\mathbf { P } = \left( \begin{array} { c c c } 1 & k & 0
- 2 & 1 & 3 \end{array} \right)\) and \(\mathbf { Q } = ( ( 1 + k ) - 1 )\) where \(k\) is a constant.
Exactly one of statements A and B is true.
Statement A: \(\quad \mathbf { P }\) and \(\mathbf { Q }\) (in that order) are conformable for multiplication.
Statement B: \(\quad \mathbf { Q }\) and \(\mathbf { P }\) (in that order) are conformable for multiplication.
- State, with a reason, which one of A and B is true.
- Find either \(\mathbf { P Q }\) or \(\mathbf { Q P }\) in terms of \(k\).