Questions SPS FM Pure (237 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
SPS SPS FM Pure 2023 November Q1
  1. The complex number \(z\) satisfies the equation \(z ^ { 2 } - 4 \mathrm { i } z ^ { * } + 11 = 0\).
Given that \(\operatorname { Re } ( z ) > 0\), find \(z\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real numbers.
SPS SPS FM Pure 2023 November Q2
2. Fig. 5 shows the curve with polar equation \(r = a ( 3 + 2 \cos \theta )\) for \(- \pi \leqslant \theta \leqslant \pi\), where \(a\) is a constant. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c545da50-9478-47e9-a6ff-4ec69bd00fc7-06_620_734_269_262} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure}
  1. Write down the polar coordinates of the points A and B .
  2. Explain why the curve is symmetrical about the initial line.
  3. In this question you must show detailed reasoning. Find in terms of \(a\) the exact area of the region enclosed by the curve.
    [0pt] [BLANK PAGE] \section*{3. In this question you must show detailed reasoning.} The roots of the equation \(2 x ^ { 3 } - 5 x + 7 = 0\) are \(\alpha , \beta\) and \(\gamma\).
  4. Find \(\frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma }\).
  5. Find an equation with integer coefficients whose roots are \(2 \alpha - 1,2 \beta - 1\) and \(2 \gamma - 1\).
    [0pt] [BLANK PAGE] \section*{4. In this question you must show detailed reasoning.}
  6. Given that $$\frac { 1 } { r ( r + 1 ) ( r + 2 ) } = \frac { A } { r ( r + 1 ) } + \frac { B } { ( r + 1 ) ( r + 2 ) }$$ show that \(A = \frac { 1 } { 2 }\) and find the value of \(B\).
  7. Use the method of differences to find $$\sum _ { r = 10 } ^ { 98 } \frac { 1 } { r ( r + 1 ) ( r + 2 ) }$$ giving your answer as a rational number.
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2023 November Q5
5. (a) Use a Maclaurin series to find a quadratic approximation for \(\ln ( 1 + 2 x )\).
(b) Find the percentage error in using the approximation in part (a) to calculate \(\ln ( 1.2 )\).
(c) Jane uses the Maclaurin series in part (a) to try to calculate an approximation for \(\ln 3\). Explain whether her method is valid.
[0pt] [BLANK PAGE] \section*{6. In this question you must show detailed reasoning.} In this question you may assume the results for $$\sum _ { r = 1 } ^ { n } r ^ { 3 } , \quad \sum _ { r = 1 } ^ { n } r ^ { 2 } \quad \text { and } \quad \sum _ { r = 1 } ^ { n } r$$ Show that the sum of the cubes of the first \(n\) positive odd numbers is $$n ^ { 2 } \left( 2 n ^ { 2 } - 1 \right)$$ [BLANK PAGE]
SPS SPS FM Pure 2023 November Q7
7. (a) (i) Show on an Argand diagram the locus of points given by the values of \(z\) satisfying $$| z - 4 - 3 \mathbf { i } | = 5$$ Taking the initial line as the positive real axis with the pole at the origin and given that \(\theta \in [ \alpha , \alpha + \pi ]\), where \(\alpha = - \arctan \left( \frac { 4 } { 3 } \right)\),
(ii) show that this locus of points can be represented by the polar curve with equation $$r = 8 \cos \theta + 6 \sin \theta$$ The set of points \(A\) is defined by $$A = \left\{ z : 0 \leqslant \arg z \leqslant \frac { \pi } { 3 } \right\} \cap \{ z : | z - 4 - 3 \mathbf { i } | \leqslant 5 \}$$ (b) (i) Show, by shading on your Argand diagram, the set of points \(A\).
(ii) Find the exact area of the region defined by \(A\), giving your answer in simplest form.
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2023 November Q8
8. (a) Use a hyperbolic substitution and calculus to show that $$\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } } \mathrm {~d} x = \frac { 1 } { 2 } \left[ x \sqrt { x ^ { 2 } - 1 } + \operatorname { arcosh } x \right] + k$$ where \(k\) is an arbitrary constant. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c545da50-9478-47e9-a6ff-4ec69bd00fc7-20_727_805_525_687} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 4 } { 15 } x \operatorname { arcosh } x \quad x \geqslant 1$$ The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\), the \(x\)-axis and the line with equation \(x = 3\)
(b) Using algebraic integration and the result from part (a), show that the area of \(R\) is given by $$\frac { 1 } { 15 } [ 17 \ln ( 3 + 2 \sqrt { 2 } ) - 6 \sqrt { 2 } ]$$ [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2026 November Q1
  1. The complex number \(z\) satisfies the equation \(z + 2 \mathrm { i } z ^ { * } + 1 - 4 \mathrm { i } = 0\).
You are given that \(z = x + \mathrm { i } y\), where \(x\) and \(y\) are real numbers.
Determine the values of \(x\) and \(y\).
SPS SPS FM Pure 2026 November Q2
2. Prove by induction that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$ [BLANK PAGE]
SPS SPS FM Pure 2026 November Q3
3. The figure below shows the curve with cartesian equation \(\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = x y\).
\includegraphics[max width=\textwidth, alt={}, center]{f42517a5-d7ed-40f3-bb04-faea97d4b19b-08_830_997_228_262}
  1. Show that the polar equation of the curve is \(r ^ { 2 } = a \sin b \theta\), where \(a\) and \(b\) are positive constants to be determined.
  2. Determine the exact maximum value of \(r\).
  3. Determine the area enclosed by one of the loops.
    [0pt] [BLANK PAGE] \section*{4. In this question you must show detailed reasoning.}
    1. The curves with equations $$y = \frac { 3 } { 4 } \sinh x \text { and } y = \tanh x + \frac { 1 } { 5 }$$ intersect at just one point \(P\)
  4. Use algebra to show that the \(x\) coordinate of \(P\) satisfies the equation $$15 \mathrm { e } ^ { 4 x } - 48 \mathrm { e } ^ { 3 x } + 32 \mathrm { e } ^ { x } - 15 = 0$$
  5. Show that \(\mathrm { e } ^ { x } = 3\) is a solution of this equation.
  6. Hence state the exact coordinates of \(P\).
    (ii) Show that $$\int _ { - 4 } ^ { 0 } \frac { \mathrm { e } ^ { \frac { 1 } { x } } } { x ^ { 2 } } \mathrm {~d} x = \mathrm { e } ^ { - \frac { 1 } { 4 } }$$ [BLANK PAGE]
SPS SPS FM Pure 2026 November Q5
5. Use the method of differences to prove that for \(n > 2\) $$\sum _ { r = 2 } ^ { n } \frac { 4 } { r ^ { 2 } - 1 } = \frac { ( p n + q ) ( n - 1 ) } { n ( n + 1 ) }$$ where \(p\) and \(q\) are constants to be determined.
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2026 November Q6
6.
  1. $$z _ { 1 } = a + b \mathrm { i } \text { and } z _ { 2 } = c + d \mathrm { i }$$ where \(a , b , c\) and \(d\) are real constants.
    Given that
    • \(b > d\)
    • \(z _ { 1 } + z _ { 2 }\) is real
    • \(\left| z _ { 1 } \right| = \sqrt { 13 }\)
    • \(\left| z _ { 2 } \right| = 5\)
    • \(\operatorname { Re } \left( z _ { 2 } - z _ { 1 } \right) = 2\)
      show that \(a = 2\) and determine the value of each of \(b , c\) and \(d\)
    • (a) On the same Argand diagram
    • sketch the locus of points \(z\) which satisfy \(| z - 12 | = 7\)
    • sketch the locus of points \(w\) which satisfy \(| w - 5 \mathrm { i } | = 4\) showing the coordinates of any points of intersection with the axes.
      (b) Determine the range of possible values of \(| z - w |\)
      [0pt] [BLANK PAGE]
SPS SPS FM Pure 2026 November Q7
  1. In this question you must show detailed reasoning.
Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 2 } { x ^ { 2 } - x + 1 } \mathrm {~d} x\). Give your answer in exact form.
[0pt] [BLANK PAGE] \section*{8. In this question you must show detailed reasoning.} The diagram shows the curve with equation \(y = \frac { x + 3 } { \sqrt { x ^ { 2 } + 9 } }\).
\includegraphics[max width=\textwidth, alt={}, center]{f42517a5-d7ed-40f3-bb04-faea97d4b19b-18_890_1010_367_242} The region R , shown shaded in the diagram, is bounded by the curve, the \(x\)-axis, the \(y\)-axis, and the line \(x = 4\).
  1. Determine the area of R . Give your answer in the form \(p + \ln q\) where \(p\) and \(q\) are integers to be determined. The region R is rotated through \(2 \pi\) radians about the \(x\)-axis.
  2. Determine the volume of the solid of revolution formed. Give your answer in the form \(\pi \left( a + b \ln \left( \frac { c } { d } \right) \right)\) where \(a , b , c\) and \(d\) are integers to be determined.
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2026 November Q10
10 November 2025 Instructions
  • Answer all the questions.
  • Use black or blue ink. Pencil may be used for graphs and diagrams only.
  • There are blank pages at the end of the paper for additional working. You must clearly indicate when you have moved onto additional pages on the question itself. Make sure to include the question number.
  • You are permitted to use a scientific or graphical calculator in this paper.
  • Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.
  • Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question.
  • The acceleration due to gravity is denoted by \(g \mathrm {~ms} ^ { - 2 }\). When a numerical value is needed use \(g = 9.8\) unless a different value is specified in the question.
Information
  • The total mark for this paper is \(\mathbf { 7 5 }\) marks.
  • The marks for each question are shown in brackets.
  • You are reminded of the need for clear presentation in your answers.
  • You have \(\mathbf { 7 5 }\) minutes for this paper.
\section*{Arithmetic series} \(S _ { n } = \frac { 1 } { 2 } n ( a + l ) = \frac { 1 } { 2 } n \{ 2 a + ( n - 1 ) d \}\) \section*{Geometric series} \(S _ { n } = \frac { a \left( 1 - r ^ { n } \right) } { 1 - r }\)
\(S _ { \infty } = \frac { a } { 1 - r }\) for \(| r | < 1\) \section*{Binomial series} \(( a + b ) ^ { n } = a ^ { n } + { } ^ { n } \mathrm { C } _ { 1 } a ^ { n - 1 } b + { } ^ { n } \mathrm { C } _ { 2 } a ^ { n - 2 } b ^ { 2 } + \ldots + { } ^ { n } \mathrm { C } _ { r } a ^ { n - r } b ^ { r } + \ldots + b ^ { n } \quad ( n \in \mathbb { N } )\),
where \({ } ^ { n } \mathrm { C } _ { r } = { } _ { n } \mathrm { C } _ { r } = \binom { n } { r } = \frac { n ! } { r ! ( n - r ) ! }\)
\(( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \ldots + \frac { n ( n - 1 ) \ldots ( n - r + 1 ) } { r ! } x ^ { r } + \ldots \quad ( | x | < 1 , n \in \mathbb { R } )\) \section*{Series} \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 ) , \sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }\) \section*{Maclaurin series} \(\mathrm { f } ( x ) = \mathrm { f } ( 0 ) + \mathrm { f } ^ { \prime } ( 0 ) x + \frac { \mathrm { f } ^ { \prime \prime } ( 0 ) } { 2 ! } x ^ { 2 } + \ldots + \frac { \mathrm { f } ^ { ( r ) } ( 0 ) } { r ! } x ^ { r } + \ldots\)
\(\mathrm { e } ^ { x } = \exp ( x ) = 1 + x + \frac { x ^ { 2 } } { 2 ! } + \ldots + \frac { x ^ { r } } { r ! } + \ldots\) for all \(x\)
\(\ln ( 1 + x ) = x - \frac { x ^ { 2 } } { 2 } + \frac { x ^ { 3 } } { 3 } - \ldots + ( - 1 ) ^ { r + 1 } \frac { x ^ { r } } { r } + \ldots ( - 1 < x \leq 1 )\)
\(\sin x = x - \frac { x ^ { 3 } } { 3 ! } + \frac { x ^ { 5 } } { 5 ! } - \ldots + ( - 1 ) ^ { r } \frac { x ^ { 2 r + 1 } } { ( 2 r + 1 ) ! } + \ldots\) for all \(x\)
\(\cos x = 1 - \frac { x ^ { 2 } } { 2 ! } + \frac { x ^ { 4 } } { 4 ! } - \ldots + ( - 1 ) ^ { r } \frac { x ^ { 2 r } } { ( 2 r ) ! } + \ldots\) for all \(x\)
\(( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \ldots + \frac { n ( n - 1 ) \ldots ( n - r + 1 ) } { r ! } x ^ { r } + \ldots \quad ( | x | < 1 , n \in \mathbb { R } )\) \section*{Differentiation}
f(x)\(\mathrm { f } ^ { \prime } ( x )\)
\(\tan k x\)\(k \sec ^ { 2 } k x\)
\(\sec x\)\(\sec x \tan x\)
\(\cot x\)\(- \operatorname { cosec } ^ { 2 } x\)
\(\operatorname { cosec } x\)\(- \operatorname { cosec } x \cot x\)
\(\arcsin x\) or \(\sin ^ { - 1 } x\)\(\frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\)
\(\arccos x\) or \(\cos ^ { - 1 } x\)\(- \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\)
\(\arctan x\) or \(\tan ^ { - 1 } x\)\(\frac { 1 } { 1 + x ^ { 2 } }\)
Quotient rule \(y = \frac { u } { v } , \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { v \frac { \mathrm {~d} u } { \mathrm {~d} x } - u \frac { \mathrm {~d} v } { \mathrm {~d} x } } { v ^ { 2 } }\) \section*{Differentiation from first principles} \(\mathrm { f } ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { \mathrm { f } ( x + h ) - \mathrm { f } ( x ) } { h }\) \section*{Integration} \(\int \frac { \mathrm { f } ^ { \prime } ( x ) } { \mathrm { f } ( x ) } \mathrm { d } x = \ln | \mathrm { f } ( x ) | + c\)
\(\int \mathrm { f } ^ { \prime } ( x ) ( \mathrm { f } ( x ) ) ^ { n } \mathrm {~d} x = \frac { 1 } { n + 1 } ( \mathrm { f } ( x ) ) ^ { n + 1 } + c\) Integration by parts \(\int u \frac { \mathrm {~d} v } { \mathrm {~d} x } \mathrm {~d} x = u v - \int v \frac { \mathrm {~d} u } { \mathrm {~d} x } \mathrm {~d} x\)
Area of sector enclosed by polar curve is \(\frac { 1 } { 2 } \int r ^ { 2 } \mathrm {~d} \theta\)
\(\mathrm { f } ( x )\)\(\int \mathrm { f } ( \mathrm { x } ) \mathrm { d } x\)
\(\frac { 1 } { \sqrt { a ^ { 2 } - x ^ { 2 } } }\)\(\sin ^ { - 1 } \left( \frac { x } { a } \right) \quad ( | x | < a )\)
\(\frac { 1 } { a ^ { 2 } + x ^ { 2 } }\)\(\frac { 1 } { a } \tan ^ { - 1 } \left( \frac { x } { a } \right)\)
\(\frac { 1 } { \sqrt { a ^ { 2 } + x ^ { 2 } } }\)\(\sinh ^ { - 1 } \left( \frac { x } { a } \right)\) or \(\ln \left( x + \sqrt { x ^ { 2 } + a ^ { 2 } } \right)\)
\(\frac { 1 } { \sqrt { x ^ { 2 } - a ^ { 2 } } }\)\(\cosh ^ { - 1 } \left( \frac { x } { a } \right)\) or \(\ln \left( x + \sqrt { x ^ { 2 } - a ^ { 2 } } \right) \quad ( x > a )\)
\section*{Numerical methods} Trapezium rule: \(\int _ { a } ^ { b } y \mathrm {~d} x \approx \frac { 1 } { 2 } h \left\{ \left( y _ { 0 } + y _ { n } \right) + 2 \left( y _ { 1 } + y _ { 2 } + \ldots + y _ { n - 1 } \right) \right\}\), where \(h = \frac { b - a } { n }\)
The Newton-Raphson iteration for solving \(\mathrm { f } ( x ) = 0 : x _ { n + 1 } = x _ { n } - \frac { \mathrm { f } \left( x _ { n } \right) } { \mathrm { f } ^ { \prime } \left( x _ { n } \right) }\) \section*{Complex numbers} Circles: \(| z - a | = k\)
Half lines: \(\arg ( z - a ) = \alpha\)
Lines: \(| z - a | = | z - b |\) \section*{Small angle approximations} \(\sin \theta \approx \theta , \cos \theta \approx 1 - \frac { 1 } { 2 } \theta ^ { 2 } , \tan \theta \approx \theta\) where \(\theta\) is small and measured in radians \section*{Trigonometric identities} \(\sin ( A \pm B ) = \sin A \cos B \pm \cos A \sin B\)
\(\cos ( A \pm B ) = \cos A \cos B \mp \sin A \sin B\)
\(\tan ( A \pm B ) = \frac { \tan A \pm \tan B } { 1 \mp \tan A \tan B } \quad \left( A \pm B \neq \left( k + \frac { 1 } { 2 } \right) \pi \right)\) \section*{Hyperbolic functions} $$\begin{aligned} & \cosh ^ { 2 } x - \sinh ^ { 2 } x = 1
& \sinh ^ { - 1 } x = \ln \left[ x + \sqrt { \left( x ^ { 2 } + 1 \right) } \right]
& \cosh ^ { - 1 } x = \ln \left[ x + \sqrt { \left( x ^ { 2 } - 1 \right) } \right] , x \geq 1
& \tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right) , - 1 < x < 1 \end{aligned}$$
  1. The complex number \(z\) satisfies the equation \(z + 2 \mathrm { i } z ^ { * } + 1 - 4 \mathrm { i } = 0\).
You are given that \(z = x + \mathrm { i } y\), where \(x\) and \(y\) are real numbers.
Determine the values of \(x\) and \(y\).
2. Prove by induction that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$ [BLANK PAGE]
3. The figure below shows the curve with cartesian equation \(\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = x y\).
\includegraphics[max width=\textwidth, alt={}, center]{f42517a5-d7ed-40f3-bb04-faea97d4b19b-08_830_997_228_262}
  1. Show that the polar equation of the curve is \(r ^ { 2 } = a \sin b \theta\), where \(a\) and \(b\) are positive constants to be determined.
  2. Determine the exact maximum value of \(r\).
  3. Determine the area enclosed by one of the loops.
    [0pt] [BLANK PAGE] \section*{4. In this question you must show detailed reasoning.}
    1. The curves with equations $$y = \frac { 3 } { 4 } \sinh x \text { and } y = \tanh x + \frac { 1 } { 5 }$$ intersect at just one point \(P\)
  4. Use algebra to show that the \(x\) coordinate of \(P\) satisfies the equation $$15 \mathrm { e } ^ { 4 x } - 48 \mathrm { e } ^ { 3 x } + 32 \mathrm { e } ^ { x } - 15 = 0$$
  5. Show that \(\mathrm { e } ^ { x } = 3\) is a solution of this equation.
  6. Hence state the exact coordinates of \(P\).
    (ii) Show that $$\int _ { - 4 } ^ { 0 } \frac { \mathrm { e } ^ { \frac { 1 } { x } } } { x ^ { 2 } } \mathrm {~d} x = \mathrm { e } ^ { - \frac { 1 } { 4 } }$$ [BLANK PAGE]
    5. Use the method of differences to prove that for \(n > 2\) $$\sum _ { r = 2 } ^ { n } \frac { 4 } { r ^ { 2 } - 1 } = \frac { ( p n + q ) ( n - 1 ) } { n ( n + 1 ) }$$ where \(p\) and \(q\) are constants to be determined.
    [0pt] [BLANK PAGE]
    6.
    (i) $$z _ { 1 } = a + b \mathrm { i } \text { and } z _ { 2 } = c + d \mathrm { i }$$ where \(a , b , c\) and \(d\) are real constants.
    Given that
    • \(b > d\)
    • \(z _ { 1 } + z _ { 2 }\) is real
    • \(\left| z _ { 1 } \right| = \sqrt { 13 }\)
    • \(\left| z _ { 2 } \right| = 5\)
    • \(\operatorname { Re } \left( z _ { 2 } - z _ { 1 } \right) = 2\)
      show that \(a = 2\) and determine the value of each of \(b , c\) and \(d\)
      (ii) (a) On the same Argand diagram
    • sketch the locus of points \(z\) which satisfy \(| z - 12 | = 7\)
    • sketch the locus of points \(w\) which satisfy \(| w - 5 \mathrm { i } | = 4\) showing the coordinates of any points of intersection with the axes.
    • Determine the range of possible values of \(| z - w |\)
      [0pt] [BLANK PAGE]
    1. In this question you must show detailed reasoning.
    Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 2 } { x ^ { 2 } - x + 1 } \mathrm {~d} x\). Give your answer in exact form.
    [0pt] [BLANK PAGE] \section*{8. In this question you must show detailed reasoning.} The diagram shows the curve with equation \(y = \frac { x + 3 } { \sqrt { x ^ { 2 } + 9 } }\).
    \includegraphics[max width=\textwidth, alt={}, center]{f42517a5-d7ed-40f3-bb04-faea97d4b19b-18_890_1010_367_242} The region R , shown shaded in the diagram, is bounded by the curve, the \(x\)-axis, the \(y\)-axis, and the line \(x = 4\).
  7. Determine the area of R . Give your answer in the form \(p + \ln q\) where \(p\) and \(q\) are integers to be determined. The region R is rotated through \(2 \pi\) radians about the \(x\)-axis.
  8. Determine the volume of the solid of revolution formed. Give your answer in the form \(\pi \left( a + b \ln \left( \frac { c } { d } \right) \right)\) where \(a , b , c\) and \(d\) are integers to be determined.
    [0pt] [BLANK PAGE]
    9. Given that $$y = \cos x \sinh x \quad x \in \mathbb { R }$$
  9. show that $$\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } } = k y$$ where \(k\) is a constant to be determined.
  10. Hence determine the first three non-zero terms of the Maclaurin series for \(y\), giving each coefficient in simplest form.
    [0pt] [BLANK PAGE]
    10. The quartic equation $$2 x ^ { 4 } + A x ^ { 3 } - A x ^ { 2 } - 5 x + 6 = 0$$ where \(A\) is a real constant, has roots \(\alpha , \beta , \gamma\) and \(\delta\)
  11. Determine the value of $$\frac { 3 } { \alpha } + \frac { 3 } { \beta } + \frac { 3 } { \gamma } + \frac { 3 } { \delta }$$ Given that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = - \frac { 3 } { 4 }\)
  12. determine the possible values of \(A\)
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]