SPS SPS FM Pure 2026 November — Question 6

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2026
SessionNovember
TopicComplex Numbers Arithmetic
TypeComplex number parameter problems

6.
  1. $$z _ { 1 } = a + b \mathrm { i } \text { and } z _ { 2 } = c + d \mathrm { i }$$ where \(a , b , c\) and \(d\) are real constants.
    Given that
    • \(b > d\)
    • \(z _ { 1 } + z _ { 2 }\) is real
    • \(\left| z _ { 1 } \right| = \sqrt { 13 }\)
    • \(\left| z _ { 2 } \right| = 5\)
    • \(\operatorname { Re } \left( z _ { 2 } - z _ { 1 } \right) = 2\)
      show that \(a = 2\) and determine the value of each of \(b , c\) and \(d\)
    • (a) On the same Argand diagram
    • sketch the locus of points \(z\) which satisfy \(| z - 12 | = 7\)
    • sketch the locus of points \(w\) which satisfy \(| w - 5 \mathrm { i } | = 4\) showing the coordinates of any points of intersection with the axes.
      (b) Determine the range of possible values of \(| z - w |\)
      [0pt] [BLANK PAGE]