Questions
P2
(856 questions)
CAIE
P2
2002
June
Q5
- Find the exact coordinates of \(P\).
- Show that the \(x\)-coordinates of \(Q\) and \(R\) satisfy the equation
$$x = \frac { 1 } { 4 } e ^ { x } .$$
- Use the iterative formula
$$x _ { n + 1 } = \frac { 1 } { 4 } e ^ { x _ { n } }$$
with initial value \(x _ { 1 } = 0\), to find the \(x\)-coordinate of \(Q\) correct to 2 decimal places, showing the value of each approximation that you calculate.
CAIE
P2
2010
June
Q6
- By sketching a suitable pair of graphs, show that the equation
$$\ln x = 2 - x ^ { 2 }$$
has only one root.
- Verify by calculation that this root lies between \(x = 1.3\) and \(x = 1.4\).
- Show that, if a sequence of values given by the iterative formula
$$x _ { n + 1 } = \sqrt { } \left( 2 - \ln x _ { n } \right)$$
converges, then it converges to the root of the equation in part (i).
- Use the iterative formula \(x _ { n + 1 } = \sqrt { } \left( 2 - \ln x _ { n } \right)\) to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE
P2
2014
June
Q5
- Prove that \(\tan \theta + \cot \theta \equiv \frac { 2 } { \sin 2 \theta }\).
- Hence
(a) find the exact value of \(\tan \frac { 1 } { 8 } \pi + \cot \frac { 1 } { 8 } \pi\),
(b) evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 6 } { \tan \theta + \cot \theta } \mathrm { d } \theta\).
CAIE
P2
2003
November
Q4
- Express \(\cos \theta + ( \sqrt { } 3 ) \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving the exact value of \(\alpha\).
- Hence show that one solution of the equation
$$\cos \theta + ( \sqrt { } 3 ) \sin \theta = \sqrt { } 2$$
is \(\theta = \frac { 7 } { 12 } \pi\), and find the other solution in the interval \(0 < \theta < 2 \pi\).
- By sketching a suitable pair of graphs, for \(x < 0\), show that exactly one root of the equation \(x ^ { 2 } = 2 ^ { x }\) is negative.
- Verify by calculation that this root lies between - 1.0 and - 0.5 .
- Use the iterative formula
$$x _ { n + 1 } = - \sqrt { } \left( 2 ^ { x _ { n } } \right)$$
to determine this root correct to 2 significant figures, showing the result of each iteration.
CAIE
P2
2007
November
Q7
- Prove the identity
$$( \cos x + 3 \sin x ) ^ { 2 } \equiv 5 - 4 \cos 2 x + 3 \sin 2 x$$
- Using the identity, or otherwise, find the exact value of
$$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } ( \cos x + 3 \sin x ) ^ { 2 } d x$$
CAIE
P2
2017
November
Q5
- Show that the \(x\)-coordinate of \(Q\) satisfies the equation \(x = \frac { 9 } { 8 } - \frac { 1 } { 2 } \mathrm { e } ^ { - 2 x }\).
- Use an iterative formula based on the equation in part (i) to find the \(x\)-coordinate of \(Q\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.