Show that the \(x\)-coordinates of \(Q\) and \(R\) satisfy the equation
$$x = \frac { 1 } { 4 } e ^ { x } .$$
Use the iterative formula
$$x _ { n + 1 } = \frac { 1 } { 4 } e ^ { x _ { n } }$$
with initial value \(x _ { 1 } = 0\), to find the \(x\)-coordinate of \(Q\) correct to 2 decimal places, showing the value of each approximation that you calculate.