A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q5
CAIE P2 2014 June — Question 5
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2014
Session
June
Topic
Reciprocal Trig & Identities
Prove that \(\tan \theta + \cot \theta \equiv \frac { 2 } { \sin 2 \theta }\).
Hence
(a) find the exact value of \(\tan \frac { 1 } { 8 } \pi + \cot \frac { 1 } { 8 } \pi\),
(b) evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { 6 } { \tan \theta + \cot \theta } \mathrm { d } \theta\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7