Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2015 November Q4
4 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that, for all positive integers \(n\), $$a _ { n } = \frac { n + 5 } { \sqrt { } \left( n ^ { 2 } - n + 1 \right) } - \frac { n + 6 } { \sqrt { } \left( n ^ { 2 } + n + 1 \right) }$$ The sum \(\sum _ { n = 1 } ^ { N } a _ { n }\) is denoted by \(S _ { N }\). Find
  1. the value of \(S _ { 30 }\) correct to 3 decimal places,
  2. the least value of \(N\) for which \(S _ { N } > 4.9\).
CAIE FP1 2015 November Q5
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15 ,
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 . \end{aligned}$$ Write down the value of \(p\) and find the value of \(q\). Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\).
CAIE FP1 2015 November Q6
6 The matrix A, where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0
10 & - 7 & 10
7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3. Find corresponding eigenvectors. It is given that \(\left( \begin{array} { l } 0
2
1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\). Find the corresponding eigenvalue. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
CAIE FP1 2015 November Q7
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & - 3 & 1
3 & - 5 & - 7 & 7
5 & - 9 & - 13 & 9
7 & - 13 & - 19 & 11 \end{array} \right)$$ Find the rank of \(\mathbf { M }\) and a basis for the null space of T . The vector \(\left( \begin{array} { l } 1
2
3
4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a
b
- 1
- 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.
CAIE FP1 2015 November Q8
8 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + k x } { x + 1 }\), where \(k\) is a constant. Find the set of values of \(k\) for which \(C\) has no stationary points. For the case \(k = 4\), find the equations of the asymptotes of \(C\) and sketch \(C\), indicating the coordinates of the points where \(C\) intersects the coordinate axes.
CAIE FP1 2015 November Q9
9 It is given that \(I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x\) for \(n \geqslant 0\). Show that $$I _ { n } = ( n - 1 ) \left[ I _ { n - 2 } - I _ { n - 1 } \right] \text { for } n \geqslant 2$$ Hence find, in an exact form, the mean value of \(( \ln x ) ^ { 3 }\) with respect to \(x\) over the interval \(1 \leqslant x \leqslant \mathrm { e }\).
CAIE FP1 2015 November Q10
10 Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta }$$ Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
[0pt] [Question 11 is printed on the next page.]
CAIE FP1 2015 November Q11 EITHER
The points \(A , B\) and \(C\) have position vectors \(\mathbf { i } , 2 \mathbf { j }\) and \(4 \mathbf { k }\) respectively, relative to an origin \(O\). The point \(N\) is the foot of the perpendicular from \(O\) to the plane \(A B C\). The point \(P\) on the line-segment \(O N\) is such that \(O P = \frac { 3 } { 4 } O N\). The line \(A P\) meets the plane \(O B C\) at \(Q\). Find a vector perpendicular to the plane \(A B C\) and show that the length of \(O N\) is \(\frac { 4 } { \sqrt { } ( 21 ) }\). Find the position vector of the point \(Q\). Show that the acute angle between the planes \(A B C\) and \(A B Q\) is \(\cos ^ { - 1 } \left( \frac { 2 } { 3 } \right)\).
CAIE FP1 2015 November Q11 OR
The curve \(C\) has polar equation \(r = a ( 1 - \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\). Sketch \(C\). Find the area of the region enclosed by the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\), the half-line \(\theta = \frac { 1 } { 2 } \pi\) and the half-line \(\theta = \frac { 3 } { 2 } \pi\). Show that $$\left( \frac { \mathrm { d } s } { \mathrm {~d} \theta } \right) ^ { 2 } = 4 a ^ { 2 } \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right) ,$$ where \(s\) denotes arc length, and find the length of the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series.
Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2015 November Q5
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 \end{aligned}$$ Write down the value of \(p\) and find the value of \(q\). Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\).
CAIE FP1 2015 November Q6
6 The matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0
10 & - 7 & 10
7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3. Find corresponding eigenvectors. It is given that \(\left( \begin{array} { l } 0
2
1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\). Find the corresponding eigenvalue. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
AQA FP1 2006 January Q1
1
  1. Show that the equation $$x ^ { 3 } + 2 x - 2 = 0$$ has a root between 0.5 and 1 .
  2. Use linear interpolation once to find an estimate of this root. Give your answer to two decimal places.
AQA FP1 2006 January Q2
2
  1. For each of the following improper integrals, find the value of the integral or explain briefly why it does not have a value:
    1. \(\int _ { 0 } ^ { 9 } \frac { 1 } { \sqrt { x } } \mathrm {~d} x\);
    2. \(\int _ { 0 } ^ { 9 } \frac { 1 } { x \sqrt { x } } \mathrm {~d} x\).
  2. Explain briefly why the integrals in part (a) are improper integrals.
AQA FP1 2006 January Q3
3 Find the general solution, in degrees, for the equation $$\sin \left( 4 x + 10 ^ { \circ } \right) = \sin 50 ^ { \circ }$$
AQA FP1 2006 January Q4
4 A curve has equation $$y = \frac { 6 x } { x - 1 }$$
  1. Write down the equations of the two asymptotes to the curve.
  2. Sketch the curve and the two asymptotes.
  3. Solve the inequality $$\frac { 6 x } { x - 1 } < 3$$
AQA FP1 2006 January Q5
5
    1. Calculate \(( 2 + \mathrm { i } \sqrt { 5 } ) ( \sqrt { 5 } - \mathrm { i } )\).
    2. Hence verify that \(\sqrt { 5 } - \mathrm { i }\) is a root of the equation $$( 2 + \mathrm { i } \sqrt { 5 } ) z = 3 z ^ { * }$$ where \(z ^ { * }\) is the conjugate of \(z\).
  1. The quadratic equation $$x ^ { 2 } + p x + q = 0$$ in which the coefficients \(p\) and \(q\) are real, has a complex root \(\sqrt { 5 } - \mathrm { i }\).
    1. Write down the other root of the equation.
    2. Find the sum and product of the two roots of the equation.
    3. Hence state the values of \(p\) and \(q\).
AQA FP1 2006 January Q6
6 [Figure 1 and Figure 2, printed on the insert, are provided for use in this question.]
The variables \(x\) and \(y\) are known to be related by an equation of the form $$y = k x ^ { n }$$ where \(k\) and \(n\) are constants.
Experimental evidence has provided the following approximate values:
\(x\)417150300
\(y\)1.85.03050
  1. Complete the table in Figure 1, showing values of \(X\) and \(Y\), where $$X = \log _ { 10 } x \quad \text { and } \quad Y = \log _ { 10 } y$$ Give each value to two decimal places.
  2. Show that if \(y = k x ^ { n }\), then \(X\) and \(Y\) must satisfy an equation of the form $$Y = a X + b$$
  3. Draw on Figure 2 a linear graph relating \(X\) and \(Y\).
  4. Find an estimate for the value of \(n\).
AQA FP1 2006 January Q7
7
  1. The transformation T is defined by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left[ \begin{array} { r r } 0 & - 1
    - 1 & 0 \end{array} \right]$$
    1. Describe the transformation T geometrically.
    2. Calculate the matrix product \(\mathbf { A } ^ { 2 }\).
    3. Explain briefly why the transformation T followed by T is the identity transformation.
  2. The matrix \(\mathbf { B }\) is defined by $$\mathbf { B } = \left[ \begin{array} { l l } 1 & 1
    0 & 1 \end{array} \right]$$
    1. Calculate \(\mathbf { B } ^ { 2 } - \mathbf { A } ^ { 2 }\).
    2. Calculate \(( \mathbf { B } + \mathbf { A } ) ( \mathbf { B } - \mathbf { A } )\).
AQA FP1 2006 January Q8
8 A curve has equation \(y ^ { 2 } = 12 x\).
  1. Sketch the curve.
    1. The curve is translated by 2 units in the positive \(y\) direction. Write down the equation of the curve after this translation.
    2. The original curve is reflected in the line \(y = x\). Write down the equation of the curve after this reflection.
    1. Show that if the straight line \(y = x + c\), where \(c\) is a constant, intersects the curve \(y ^ { 2 } = 12 x\), then the \(x\)-coordinates of the points of intersection satisfy the equation $$x ^ { 2 } + ( 2 c - 12 ) x + c ^ { 2 } = 0$$
    2. Hence find the value of \(c\) for which the straight line is a tangent to the curve.
    3. Using this value of \(c\), find the coordinates of the point where the line touches the curve.
    4. In the case where \(c = 4\), determine whether the line intersects the curve or not.
AQA FP1 2007 January Q1
1
  1. Solve the following equations, giving each root in the form \(a + b \mathrm { i }\) :
    1. \(x ^ { 2 } + 16 = 0\);
    2. \(x ^ { 2 } - 2 x + 17 = 0\).
    1. Expand \(( 1 + x ) ^ { 3 }\).
    2. Express \(( 1 + \mathrm { i } ) ^ { 3 }\) in the form \(a + b \mathrm { i }\).
    3. Hence, or otherwise, verify that \(x = 1 + \mathrm { i }\) satisfies the equation $$x ^ { 3 } + 2 x - 4 \mathrm { i } = 0$$
AQA FP1 2007 January Q2
2 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left[ \begin{array} { c c } \frac { \sqrt { 3 } } { 2 } & - \frac { 1 } { 2 }
\frac { 1 } { 2 } & \frac { \sqrt { 3 } } { 2 } \end{array} \right] , \mathbf { B } = \left[ \begin{array} { c c } \frac { \sqrt { 3 } } { 2 } & \frac { 1 } { 2 }
\frac { 1 } { 2 } & - \frac { \sqrt { 3 } } { 2 } \end{array} \right]$$
  1. Calculate:
    1. \(\mathbf { A } + \mathbf { B }\);
    2. \(\mathbf { B A }\).
  2. Describe fully the geometrical transformation represented by each of the following matrices:
    1. \(\mathbf { A }\);
    2. \(\mathbf { B }\);
    3. \(\mathbf { B A }\).
AQA FP1 2007 January Q3
3 The quadratic equation $$2 x ^ { 2 } + 4 x + 3 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } = 1\).
  3. Find the value of \(\alpha ^ { 4 } + \beta ^ { 4 }\).
AQA FP1 2007 January Q4
4 The variables \(x\) and \(y\) are related by an equation of the form $$y = a x ^ { b }$$ where \(a\) and \(b\) are constants.
  1. Using logarithms to base 10 , reduce the relation \(y = a x ^ { b }\) to a linear law connecting \(\log _ { 10 } x\) and \(\log _ { 10 } y\).
  2. The diagram shows the linear graph that results from plotting \(\log _ { 10 } y\) against \(\log _ { 10 } x\).
    \includegraphics[max width=\textwidth, alt={}, center]{49539feb-f842-49f4-b809-72e8147072e7-3_711_1223_1503_411} Find the values of \(a\) and \(b\).
AQA FP1 2007 January Q5
5 A curve has equation $$y = \frac { x } { x ^ { 2 } - 1 }$$
  1. Write down the equations of the three asymptotes to the curve.
  2. Sketch the curve.
    (You are given that the curve has no stationary points.)
  3. Solve the inequality $$\frac { x } { x ^ { 2 } - 1 } > 0$$
AQA FP1 2007 January Q6
6
    1. Expand \(( 2 r - 1 ) ^ { 2 }\).
    2. Hence show that $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
  1. Hence find the sum of the squares of the odd numbers between 100 and 200 .