CAIE FP1 2015 November — Question 6

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2015
SessionNovember
Topic3x3 Matrices

6 The matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0
10 & - 7 & 10
7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3. Find corresponding eigenvectors. It is given that \(\left( \begin{array} { l } 0
2
1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\). Find the corresponding eigenvalue. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
This paper (2 questions)
View full paper