A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Arithmetic
Q1
AQA FP1 2007 January — Question 1
Exam Board
AQA
Module
FP1 (Further Pure Mathematics 1)
Year
2007
Session
January
Topic
Complex Numbers Arithmetic
Type
Verifying roots satisfy equations
1
Solve the following equations, giving each root in the form \(a + b \mathrm { i }\) :
\(x ^ { 2 } + 16 = 0\);
\(x ^ { 2 } - 2 x + 17 = 0\).
Expand \(( 1 + x ) ^ { 3 }\).
Express \(( 1 + \mathrm { i } ) ^ { 3 }\) in the form \(a + b \mathrm { i }\).
Hence, or otherwise, verify that \(x = 1 + \mathrm { i }\) satisfies the equation $$x ^ { 3 } + 2 x - 4 \mathrm { i } = 0$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8