10. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
$$\begin{aligned}
& l _ { 1 } : \mathbf { r } = ( \mathbf { i } + 5 \mathbf { j } + 5 \mathbf { k } ) + \lambda ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } )
& l _ { 2 } : \mathbf { r } = ( 2 \mathbf { j } + 12 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } )
\end{aligned}$$
where \(\lambda\) and \(\mu\) are scalar parameters.
- Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection.
- Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular to each other.
The point \(A\), with position vector \(5 \mathbf { i } + 7 \mathbf { j } + 3 \mathbf { k }\), lies on \(l _ { 1 }\)
The point \(B\) is the image of \(A\) after reflection in the line \(l _ { 2 }\) - Find the position vector of \(B\).
\includegraphics[max width=\textwidth, alt={}, center]{5b698944-41ac-4072-b5e1-c580b7752c39-35_133_163_2604_1786}