8. (a) Prove that
$$\text { 2cosec } 2 A - \cot A \equiv \tan A , \quad A \neq \frac { n \pi } { 2 } , n \in \mathbb { Z }$$
(b) Hence solve, for \(0 \leqslant \theta \leqslant \frac { \pi } { 2 }\)
- \(2 \operatorname { cosec } 4 \theta - \cot 2 \theta = \sqrt { } 3\)
- \(\tan \theta + \cot \theta = 5\)
Give your answers to 3 significant figures.