Questions C3 (1200 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 2007 June Q6
6 Fig. 6 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \arctan x\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0ee3d87a-0d9e-4fa5-b8f5-8b28489e65b5-3_378_725_367_669} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find the range of the function \(\mathrm { f } ( x )\), giving your answer in terms of \(\pi\).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\). Find the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the origin.
  3. Hence write down the gradient of \(y = \frac { 1 } { 2 } \arctan x\) at the origin.
OCR MEI C3 2007 June Q7
7 Fig. 7 shows the curve \(y = \frac { x ^ { 2 } } { 1 + 2 x ^ { 3 } }\). It is undefined at \(x = a\); the line \(x = a\) is a vertical asymptote. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0ee3d87a-0d9e-4fa5-b8f5-8b28489e65b5-3_654_1034_1505_497} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Calculate the value of \(a\), giving your answer correct to 3 significant figures.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x - 2 x ^ { 4 } } { \left( 1 + 2 x ^ { 3 } \right) ^ { 2 } }\). Hence determine the coordinates of the turning points of the curve.
  3. Show that the area of the region between the curve and the \(x\)-axis from \(x = 0\) to \(x = 1\) is \(\frac { 1 } { 6 } \ln 3\).
OCR MEI C3 2007 June Q8
8 Fig. 8 shows part of the curve \(y = x \cos 2 x\), together with a point P at which the curve crosses the \(x\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0ee3d87a-0d9e-4fa5-b8f5-8b28489e65b5-4_421_965_349_550} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P .
  2. Show algebraically that \(x \cos 2 x\) is an odd function, and interpret this result graphically.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  4. Show that turning points occur on the curve for values of \(x\) which satisfy the equation \(x \tan 2 x = \frac { 1 } { 2 }\).
  5. Find the gradient of the curve at the origin. Show that the second derivative of \(x \cos 2 x\) is zero when \(x = 0\).
  6. Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } x \cos 2 x \mathrm {~d} x\), giving your answer in terms of \(\pi\). Interpret this result graphically.
OCR MEI C3 2008 June Q1
1 Solve the inequality \(| 2 x - 1 | \leqslant 3\).
OCR MEI C3 2008 June Q2
2 Find \(\int x \mathrm { e } ^ { 3 x } \mathrm {~d} x\).
OCR MEI C3 2008 June Q3
3
  1. State the algebraic condition for the function \(\mathrm { f } ( x )\) to be an even function.
    What geometrical property does the graph of an even function have?
  2. State whether the following functions are odd, even or neither.
    (A) \(\mathrm { f } ( x ) = x ^ { 2 } - 3\)
    (B) \(\mathrm { g } ( x ) = \sin x + \cos x\)
    (C) \(\mathrm { h } ( x ) = \frac { 1 } { x + x ^ { 3 } }\)
OCR MEI C3 2008 June Q4
4 Show that \(\int _ { 1 } ^ { 4 } \frac { x } { x ^ { 2 } + 2 } \mathrm {~d} x = \frac { 1 } { 2 } \ln 6\).
OCR MEI C3 2008 June Q5
5 Show that the curve \(y = x ^ { 2 } \ln x\) has a stationary point when \(x = \frac { 1 } { \sqrt { \mathrm { e } } }\).
OCR MEI C3 2008 June Q6
6 In a chemical reaction, the mass \(m\) grams of a chemical after \(t\) minutes is modelled by the equation $$m = 20 + 30 \mathrm { e } ^ { - 0.1 t }$$
  1. Find the initial mass of the chemical. What is the mass of chemical in the long term?
  2. Find the time when the mass is 30 grams.
  3. Sketch the graph of \(m\) against \(t\).
OCR MEI C3 2008 June Q7
7 Given that \(x ^ { 2 } + x y + y ^ { 2 } = 12\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
OCR MEI C3 2008 June Q8
8 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { 1 + \cos x }\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
P is the point on the curve with \(x\)-coordinate \(\frac { 1 } { 3 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8feffafd-4eba-4968-b4d2-88fa364d6170-3_825_816_571_662} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(y\)-coordinate of P .
  2. Find \(\mathrm { f } ^ { \prime } ( x )\). Hence find the gradient of the curve at the point P .
  3. Show that the derivative of \(\frac { \sin x } { 1 + \cos x }\) is \(\frac { 1 } { 1 + \cos x }\). Hence find the exact area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 3 } \pi\).
  4. Show that \(\mathrm { f } ^ { - 1 } ( x ) = \arccos \left( \frac { 1 } { x } - 1 \right)\). State the domain of this inverse function, and add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
OCR MEI C3 2008 June Q9
9 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = \sqrt { 4 - x ^ { 2 } }\) for \(- 2 \leqslant x \leqslant 2\).
  1. Show that the curve \(y = \sqrt { 4 - x ^ { 2 } }\) is a semicircle of radius 2 , and explain why it is not the whole of this circle. Fig. 9 shows a point \(\mathrm { P } ( a , b )\) on the semicircle. The tangent at P is shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8feffafd-4eba-4968-b4d2-88fa364d6170-4_625_933_589_607} \captionsetup{labelformat=empty} \caption{Fig. 9}
    \end{figure}
  2. (A) Use the gradient of OP to find the gradient of the tangent at P in terms of \(a\) and \(b\).
    (B) Differentiate \(\sqrt { 4 - x ^ { 2 } }\) and deduce the value of \(\mathrm { f } ^ { \prime } ( a )\).
    (C) Show that your answers to parts ( \(A\) ) and ( \(B\) ) are equivalent. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } ( x - 2 )\), for \(0 \leqslant x \leqslant 4\).
  3. Describe a sequence of two transformations that would map the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { g } ( x )\). Hence sketch the curve \(y = \mathrm { g } ( x )\).
  4. Show that if \(y = \mathrm { g } ( x )\) then \(9 x ^ { 2 } + y ^ { 2 } = 36 x\).
OCR MEI C3 2010 June Q1
1 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \cos 3 x \mathrm {~d} x\).
OCR MEI C3 2010 June Q2
2 Given that \(\mathrm { f } ( x ) = | x |\) and \(\mathrm { g } ( x ) = x + 1\), sketch the graphs of the composite functions \(y = \mathrm { fg } ( x )\) and \(y = \operatorname { gf } ( x )\), indicating clearly which is which.
OCR MEI C3 2010 June Q3
3
  1. Differentiate \(\sqrt { 1 + 3 x ^ { 2 } }\).
  2. Hence show that the derivative of \(x \sqrt { 1 + 3 x ^ { 2 } }\) is \(\frac { 1 + 6 x ^ { 2 } } { \sqrt { 1 + 3 x ^ { 2 } } }\).
OCR MEI C3 2010 June Q4
4 A piston can slide inside a tube which is closed at one end and encloses a quantity of gas (see Fig. 4). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{30d0d728-d6d6-4a54-baf9-a6df8646bf64-2_154_1003_1080_571} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The pressure of the gas in atmospheric units is given by \(p = \frac { 100 } { x }\), where \(x \mathrm {~cm}\) is the distance of the piston from the closed end. At a certain moment, \(x = 50\), and the piston is being pulled away from the closed end at 10 cm per minute. At what rate is the pressure changing at that time?
OCR MEI C3 2010 June Q5
5 Given that \(y ^ { 3 } = x y - x ^ { 2 }\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { y - 2 x } { 3 y ^ { 2 } - x }\).
Hence show that the curve \(y ^ { 3 } = x y - x ^ { 2 }\) has a stationary point when \(x = \frac { 1 } { 8 }\).
OCR MEI C3 2010 June Q6
6 The function \(\mathrm { f } ( x )\) is defined by $$f ( x ) = 1 + 2 \sin 3 x , \quad - \frac { \pi } { 6 } \leqslant x \leqslant \frac { \pi } { 6 }$$ You are given that this function has an inverse, \(\mathrm { f } ^ { - 1 } ( x )\).
Find \(\mathrm { f } ^ { - 1 } ( x )\) and its domain.
OCR MEI C3 2010 June Q7
7 State whether the following statements are true or false; if false, provide a counter-example.
  1. If \(a\) is rational and \(b\) is rational, then \(a + b\) is rational.
  2. If \(a\) is rational and \(b\) is irrational, then \(a + b\) is irrational.
  3. If \(a\) is irrational and \(b\) is irrational, then \(a + b\) is irrational.
OCR MEI C3 2010 June Q8
8 Fig. 8 shows the curve \(y = 3 \ln x + x - x ^ { 2 }\).
The curve crosses the \(x\)-axis at P and Q , and has a turning point at R . The \(x\)-coordinate of Q is approximately 2.05 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{30d0d728-d6d6-4a54-baf9-a6df8646bf64-3_730_841_561_651} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the coordinates of P are \(( 1,0 )\).
  2. Find the coordinates of R , giving the \(y\)-coordinate correct to 3 significant figures. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that R is a maximum point.
  3. Find \(\int \ln x \mathrm {~d} x\). Hence calculate the area of the region enclosed by the curve and the \(x\)-axis between P and Q , giving your answer to 2 significant figures.
OCR MEI C3 2010 June Q9
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { 2 x } } { 1 + \mathrm { e } ^ { 2 x } }\). The curve crosses the \(y\)-axis at P. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{30d0d728-d6d6-4a54-baf9-a6df8646bf64-4_604_1233_358_456} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of P .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying your answer. Hence calculate the gradient of the curve at P .
  3. Show that the area of the region enclosed by \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is
    \(\frac { 1 } { 2 } \ln \left( \frac { 1 + \mathrm { e } ^ { 2 } } { 2 } \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } \right)\).
  4. Prove algebraically that \(\mathrm { g } ( x )\) is an odd function. Interpret this result graphically.
  5. (A) Show that \(\mathrm { g } ( x ) + \frac { 1 } { 2 } = \mathrm { f } ( x )\).
    (B) Describe the transformation which maps the curve \(y = \mathrm { g } ( x )\) onto the curve \(y = \mathrm { f } ( x )\).
    (C) What can you conclude about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?
OCR MEI C3 Q1
1 Prove that the product of consecutive integers is always even.
OCR MEI C3 Q2
2 Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(y = \sqrt { 1 + x ^ { 3 } }\).
OCR MEI C3 Q3
3 The graph shows part of the function \(y = a \ln ( b x )\).
\includegraphics[max width=\textwidth, alt={}, center]{2f403099-2813-40d8-a9ae-1f7e64d41f80-2_377_762_900_685} The graph passes through the points \(( 2,0 )\) and \(( 4,1 )\).
  1. Show that \(b = \frac { 1 } { 2 }\) and find the exact value of \(a\).
  2. Solve the inequality \(| a \ln ( b x ) | < 2\).
OCR MEI C3 Q4
4
  1. Show that \(y = a x e ^ { - x }\) for \(a > 0\) has only one stationary point for all values of \(x\). Determine whether this stationary value is a maximum or minimum point.
  2. Sketch the curve.