9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { 2 x } } { 1 + \mathrm { e } ^ { 2 x } }\). The curve crosses the \(y\)-axis at P.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{30d0d728-d6d6-4a54-baf9-a6df8646bf64-4_604_1233_358_456}
\captionsetup{labelformat=empty}
\caption{Fig. 9}
\end{figure}
- Find the coordinates of P .
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying your answer.
Hence calculate the gradient of the curve at P .
- Show that the area of the region enclosed by \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is
\(\frac { 1 } { 2 } \ln \left( \frac { 1 + \mathrm { e } ^ { 2 } } { 2 } \right)\).
The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } \right)\). - Prove algebraically that \(\mathrm { g } ( x )\) is an odd function.
Interpret this result graphically.
- (A) Show that \(\mathrm { g } ( x ) + \frac { 1 } { 2 } = \mathrm { f } ( x )\).
(B) Describe the transformation which maps the curve \(y = \mathrm { g } ( x )\) onto the curve \(y = \mathrm { f } ( x )\).
(C) What can you conclude about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?