Questions C2 (1410 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR C2 Q2
2.
\includegraphics[max width=\textwidth, alt={}, center]{e5d62032-84ad-4e0b-9b72-ccfd8f4dbac8-1_588_513_813_593} The diagram shows a circle of radius \(r\) and centre \(O\) in which \(A D\) is a diameter.
The points \(B\) and \(C\) lie on the circle such that \(O B\) and \(O C\) are arcs of circles of radius \(r\) with centres \(A\) and \(D\) respectively. Show that the area of the shaded region \(O B C\) is \(\frac { 1 } { 6 } r ^ { 2 } ( 3 \sqrt { 3 } - \pi )\).
OCR C2 Q3
3. The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { n + 1 } = \left( u _ { n } \right) ^ { 2 } - 1 , \quad n \geq 1 .$$ Given that \(u _ { 1 } = k\), where \(k\) is a constant,
  1. find expressions for \(u _ { 2 }\) and \(u _ { 3 }\) in terms of \(k\). Given also that \(u _ { 2 } + u _ { 3 } = 11\),
  2. find the possible values of \(k\).
OCR C2 Q4
4.
\includegraphics[max width=\textwidth, alt={}, center]{e5d62032-84ad-4e0b-9b72-ccfd8f4dbac8-2_465_844_246_516} The diagram shows the curve with equation \(y = \frac { 1 } { x ^ { 2 } + 1 }\).
The shaded region \(R\) is bounded by the curve, the coordinate axes and the line \(x = 2\).
  1. Use the trapezium rule with four strips of equal width to estimate the area of \(R\). The cross-section of a support for a bookshelf is modelled by \(R\) with 1 unit on each axis representing 8 cm . Given that the support is 2 cm thick,
  2. find an estimate for the volume of the support.
OCR C2 Q5
5. (i) Find the value of \(a\) such that $$\log _ { a } 27 = 3 + \log _ { a } 8$$ (ii) Solve the equation $$2 ^ { x + 3 } = 6 ^ { x - 1 }$$ giving your answer to 3 significant figures.
OCR C2 Q6
6. (i) Evaluate $$\int _ { 2 } ^ { 4 } \left( 2 - \frac { 1 } { x ^ { 2 } } \right) \mathrm { d } x$$ (ii) Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 x ^ { 3 } + 1$$ and that \(y = 3\) when \(x = 0\), find the value of \(y\) when \(x = 2\).
OCR C2 Q7
7.
\includegraphics[max width=\textwidth, alt={}, center]{e5d62032-84ad-4e0b-9b72-ccfd8f4dbac8-3_499_721_248_552} The diagram shows part of the curve \(y = \mathrm { f } ( x )\) where \(\mathrm { f } ( x ) = \frac { 1 - 8 x ^ { 3 } } { x ^ { 2 } } , x \neq 0\).
  1. Solve the equation \(\mathrm { f } ( x ) = 0\).
  2. Find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
  3. Find the area of the shaded region bounded by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the line \(x = 2\).
OCR C2 Q8
8. A store begins to stock a new range of DVD players and achieves sales of \(\pounds 1500\) of these products during the first month. In a model it is assumed that sales will decrease by \(\pounds x\) in each subsequent month, forming an arithmetic sequence. Given that sales total \(\pounds 8100\) during the first six months, use the model to
  1. find the value of \(x\),
  2. find the expected value of sales in the eighth month,
  3. show that the expected total of sales in pounds during the first \(n\) months is given by \(k n ( 51 - n )\), where \(k\) is an integer to be found.
  4. Explain why this model cannot be valid over a long period of time.
OCR C2 Q9
9. \(f ( x ) = 2 x ^ { 3 } - 5 x ^ { 2 } + x + 2\).
  1. Show that \(( x - 2 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Fully factorise \(\mathrm { f } ( x )\).
  3. Solve the equation \(\mathrm { f } ( x ) = 0\).
  4. Find, in terms of \(\pi\), the values of \(\theta\) in the interval \(0 \leq \theta \leq 2 \pi\) for which $$2 \sin ^ { 3 } \theta - 5 \sin ^ { 2 } \theta + \sin \theta + 2 = 0$$
OCR MEI C2 Q1
1
  1. Use calculus to find, correct to 1 decimal place, the coordinates of the turning points of the curve \(y = x ^ { 3 } - 5 x\). [You need not determine the nature of the turning points.]
  2. Find the coordinates of the points where the curve \(y = x ^ { 3 } - 5 x\) meets the axes and sketch the curve.
  3. Find the equation of the tangent to the curve \(y = x ^ { 3 } - 5 x\) at the point \(( 1 , - 4 )\). Show that, where this tangent meets the curve again, the \(x\)-coordinate satisfies the equation $$x ^ { 3 } - 3 x + 2 = 0$$ Hence find the \(x\)-coordinate of the point where this tangent meets the curve again.
OCR MEI C2 Q2
2 The equation of a cubic curve is \(y = 2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that the tangent to the curve when \(x = 3\) passes through the point \(( - 1 , - 41 )\).
  2. Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum.
  3. Sketch the curve, given that the only real root of \(2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2 = 0\) is \(x = 0.2\) correct to 1 decimal place. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{b6ea89e3-a8a4-41a2-8ed5-eed6c2dfda7e-2_1017_935_285_638} \captionsetup{labelformat=empty} \caption{Fig. 11}
    \end{figure} Fig. 11 shows a sketch of the cubic curve \(y = \mathrm { f } ( x )\). The values of \(x\) where it crosses the \(x\)-axis are - 5 , - 2 and 2 , and it crosses the \(y\)-axis at \(( 0 , - 20 )\).
OCR MEI C2 Q4
4
  1. Differentiate \(x ^ { 3 } - 3 x ^ { 2 } - 9 x\). Hence find the \(x\)-coordinates of the stationary points on the curve \(y = x ^ { 3 } - 3 x ^ { 2 } - 9 x\), showing which is the maximum and which the minimum.
  2. Find, in exact form, the coordinates of the points at which the curve crosses the \(x\)-axis.
  3. Sketch the curve.
OCR MEI C2 Q5
5 The equation of a curve is \(\quad y = 7 + 6 x - x ^ { 2 }\).
  1. Use calculus to find the coordinates of the turning point on this curve. Find also the coordinates of the points of intersection of this curve with the axes, and sketch the curve.
  2. Find \(\int _ { 1 } ^ { 5 } \left( 7 + 6 x - x ^ { 2 } \right) \mathrm { d } x\), showing your working.
  3. The curve and the line \(y = 12\) intersect at \(( 1,12 )\) and \(( 5,12 )\). Using your answer to part (ii), find the area of the finite region between the curve and the line \(y = 12\).
OCR MEI C2 Q1
1 The point \(\mathrm { R } ( 6 , - 3 )\) is on the curve \(y = \mathrm { f } ( x )\).
  1. Find the coordinates of the image of R when the curve is transformed to \(y = \frac { 1 } { 2 } \mathrm { f } ( x )\).
  2. Find the coordinates of the image of R when the curve is transformed to \(y = \mathrm { f } ( 3 x )\).
OCR MEI C2 Q2
2 Fig. 8 shows the graph of \(y = \mathrm { g } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-1_800_1401_781_385} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Draw the graph of
  1. \(y = \mathrm { g } ( 2 x )\),
  2. \(y = 3 \mathrm {~g} ( x )\).
OCR MEI C2 Q3
3 The point \(\mathrm { P } ( 6,3 )\) lies on the curve \(y = \mathrm { f } ( x )\). State the coordinates of the image of P after the transformation which maps \(y = \mathrm { f } ( x )\) onto
  1. \(y = 3 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( 4 x )\).
OCR MEI C2 Q4
4 In this question, \(\mathrm { f } ( x ) = x ^ { 2 } - 5 x\). Fig. 4 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-2_795_898_824_654} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} On separate diagrams, sketch the curves \(y = \mathrm { f } ( 2 x )\) and \(y = 3 \mathrm { f } ( x )\), labelling the coordinates of their intersections with the axes and their turning points.
OCR MEI C2 Q5
5 State the transformation which maps the graph of \(y = x ^ { 2 } + 5\) onto the graph of \(y = 3 x ^ { 2 } + 15\).
OCR MEI C2 Q6
6 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-3_819_1370_271_383} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is \(y = \mathrm { f } ( x )\). State the equation of
  1. graph B ,
  2. graph C .
OCR MEI C2 Q7
7
  1. Solve the equation \(\cos x = 0.4\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Describe the transformation which maps the graph of \(y = \cos x\) onto the graph of \(y = \cos 2 x\).
OCR MEI C2 Q8
8
  1. The point \(\mathrm { P } ( 4 , - 2 )\) lies on the curve \(y = \mathrm { f } ( x )\). Find the coordinates of the image of P when the curve is transformed to \(y = \mathrm { f } ( 5 x )\).
  2. Describe fully a single transformation which maps the curve \(y = \sin x ^ { \circ }\) onto the curve \(y = \sin ( x - 90 ) ^ { \circ }\).
OCR MEI C2 Q9
9 Figs. 5.1 and 5.2 show the graph of \(y = \sin x\) for values of \(x\) from \(0 ^ { \circ }\) to \(360 ^ { \circ }\) and two transformations of this graph. State the equation of each graph after it has been transformed.
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-4_511_941_828_586} \captionsetup{labelformat=empty} \caption{Fig. 5.1}
    \end{figure}
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-4_517_937_1508_584} \captionsetup{labelformat=empty} \caption{Fig. 5.2}
    \end{figure}
OCR MEI C2 Q10
10 The curve \(y = \mathrm { f } ( x )\) has a minimum point at \(( 3,5 )\).
State the coordinates of the corresponding minimum point on the graph of
  1. \(y = 3 \mathrm { f } ( x )\),
  2. \(y = \mathrm { f } ( 2 x )\).
OCR MEI C2 Q11
11 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-5_546_989_828_596} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure} Fig. 5 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to \(\mathrm { P } , \mathrm { Q }\) and R .
  1. \(y = \mathrm { f } ( 2 x )\)
  2. \(y = \frac { 1 } { 4 } \mathrm { f } ( x )\)
OCR MEI C2 Q13
13 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{669be128-491c-4152-8f3a-e37a34dd9383-7_618_867_267_679} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Fig. 4 shows a sketch of the graph of \(y = \mathrm { f } ( x )\). On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to \(\mathrm { A } , \mathrm { B }\) and C .
  1. \(y = 2 \mathrm { f } ( x )\)
  2. \(y = \mathrm { f } ( x + 3 )\)
OCR MEI C2 Q14
14
  1. On the same axes, sketch the graphs of \(y = \cos x\) and \(y = \cos 2 x\) for values of \(x\) from 0 to \(2 \pi\).
  2. Describe the transformation which maps the graph of \(y = \cos x\) onto the graph of \(y = 3 \cos x\).