2 The equation of a cubic curve is \(y = 2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2\).
- Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that the tangent to the curve when \(x = 3\) passes through the point \(( - 1 , - 41 )\).
- Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum.
- Sketch the curve, given that the only real root of \(2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2 = 0\) is \(x = 0.2\) correct to 1 decimal place.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b6ea89e3-a8a4-41a2-8ed5-eed6c2dfda7e-2_1017_935_285_638}
\captionsetup{labelformat=empty}
\caption{Fig. 11}
\end{figure}
Fig. 11 shows a sketch of the cubic curve \(y = \mathrm { f } ( x )\). The values of \(x\) where it crosses the \(x\)-axis are - 5 , - 2 and 2 , and it crosses the \(y\)-axis at \(( 0 , - 20 )\).