Questions C1 (1442 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C1 Q7
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{813612f1-92c8-456d-84a2-aa6bb91b8a6a-3_689_1077_927_484}
\end{figure} Fig. 1 shows the curve with equation \(y ^ { 2 } = 4 ( x - 2 )\) and the line with equation \(2 x - 3 y = 12\).
The curve crosses the \(x\)-axis at the point \(A\), and the line intersects the curve at the points \(P\) and \(Q\).
  1. Write down the coordinates of \(A\).
  2. Find, using algebra, the coordinates of \(P\) and \(Q\).
  3. Show that \(\angle P A Q\) is a right angle.
Edexcel C1 Q8
8. The points \(A ( - 1 , - 2 ) , B ( 7,2 )\) and \(C ( k , 4 )\), where \(k\) is a constant, are the vertices of \(\triangle A B C\). Angle \(A B C\) is a right angle.
  1. Find the gradient of \(A B\).
  2. Calculate the value of \(k\).
  3. Show that the length of \(A B\) may be written in the form \(p \sqrt { 5 }\), where \(p\) is an integer to be found.
  4. Find the exact value of the area of \(\triangle A B C\).
  5. Find an equation for the straight line \(l\) passing through \(B\) and \(C\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C1 Q9
9. The curve \(C\) has equation \(y = \mathrm { f } ( x )\). Given that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 x ^ { 2 } - 20 x + 29\) and that \(C\) passes through the point \(P ( 2,6 )\),
  1. find \(y\) in terms of \(x\).
  2. Verify that \(C\) passes through the point \(( 4,0 )\).
  3. Find an equation of the tangent to \(C\) at \(P\). The tangent to \(C\) at the point \(Q\) is parallel to the tangent at \(P\).
  4. Calculate the exact \(x\)-coordinate of \(Q\).
Edexcel C1 Q1
  1. (a) Solve the equation \(4 x ^ { 2 } + 12 x = 0\).
You are given that \(\mathrm { f } ( x ) = 4 x ^ { 2 } + 12 x + c\), where \(c\) is a constant.
(b) Given that \(\mathrm { f } ( x ) = 0\) has equal roots, find the value of \(c\) and hence solve \(\mathrm { f } ( x ) = 0\).
Edexcel C1 Q2
2. A sequence is defined by the recurrence relation \(u _ { n + 1 } = \sqrt { \left( \frac { u _ { n } } { 2 } + \frac { a } { u _ { n } } \right) } , n = 1,2,3 , \ldots\), where \(a\) is a constant.
  1. Given that \(a = 20\) and \(u _ { 1 } = 3\), find the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\), giving your answers to 2 decimal places.
  2. Given instead that \(u _ { 1 } = u _ { 2 } = 3\),
    1. calculate the value of \(a\),
    2. write down the value of \(u _ { 5 }\).
Edexcel C1 Q3
3. For the curve \(C\) with equation \(y = x ^ { 4 } - 8 x ^ { 2 } + 3\),
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), The point \(A\), on the curve \(C\), has \(x\)-coordinate 1 .
  2. Find an equation for the normal to \(C\) at \(A\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    [0pt] [P1 June 2003 Question 8*]
Edexcel C1 Q4
4. The width of a rectangular sports pitch is \(x\) metres, \(x > 0\). The length of the pitch is 20 m more than its width. Given that the perimeter of the pitch must be less than 300 m ,
  1. form a linear inequality in \(x\). Given that the area of the pitch must be greater than \(4800 \mathrm {~m} ^ { 2 }\),
  2. form a quadratic inequality in \(x\).
  3. by solving your inequalities, find the set of possible values of \(x\).
Edexcel C1 Q5
5. The curve \(C\) with equation \(y = \mathrm { f } ( x )\) is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 \sqrt { } x + \frac { 12 } { \sqrt { } x } , x > 0\).
  1. Show that, when \(x = 8\), the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) is \(9 \sqrt { } 2\). The curve \(C\) passes through the point \(( 4,30 )\).
  2. Using integration, find \(\mathrm { f } ( x )\).
Edexcel C1 Q6
6. (a) An arithmetic series has first term \(a\) and common difference \(d\). Prove that the sum of the first \(n\) terms of the series is \(\frac { 1 } { 2 } n [ 2 a + ( n - 1 ) d ]\). A company made a profit of \(\pounds 54000\) in the year 2001. A model for future performance assumes that yearly profits will increase in an arithmetic sequence with common difference \(\pounds d\). This model predicts total profits of \(\pounds 619200\) for the 9 years 2001 to 2009 inclusive.
(b) Find the value of \(d\). Using your value of \(d\),
(c) find the predicted profit for the year 2011.
Edexcel C1 Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8bae58f7-c53a-43ed-9a1d-2f718bd1e539-3_563_570_785_561} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A ( - 3 , - 2 )\) and \(B ( 8,4 )\) are at the ends of a diameter of the circle shown in Fig. 1.
  1. Find the coordinates of the centre of the circle.
  2. Find an equation of the diameter \(A B\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
  3. Find an equation of tangent to the circle at \(B\). The line \(l\) passes through \(A\) and the origin.
  4. Find the coordinates of the point at which \(l\) intersects the tangent to the circle at \(B\), giving your answer as exact fractions.
Edexcel C1 Q8
8. $$f ( x ) = 9 - ( x - 2 ) ^ { 2 }$$
  1. Write down the maximum value of \(\mathrm { f } ( x )\).
  2. Sketch the graph of \(y = \mathrm { f } ( x )\), showing the coordinates of the points at which the graph meets the coordinate axes. The points \(A\) and \(B\) on the graph of \(y = \mathrm { f } ( x )\) have coordinates \(( - 2 , - 7 )\) and \(( 3,8 )\) respectively.
  3. Find, in the form \(y = m x + c\), an equation of the straight line through \(A\) and \(B\).
  4. Find the coordinates of the point at which the line \(A B\) crosses the \(x\)-axis. The mid-point of \(A B\) lies on the line with equation \(y = k x\), where \(k\) is a constant.
  5. Find the value of \(k\).
Edexcel C1 Q1
  1. (a) Express \(\frac { 21 } { \sqrt { 7 } }\) in the form \(k \sqrt { 7 }\).
    (b) Express \(8 ^ { - \frac { 1 } { 3 } }\) as an exact fraction in its simplest form.
  2. Evaluate
$$\sum _ { r = 10 } ^ { 30 } ( 7 + 2 r ) .$$
Edexcel C1 Q3
  1. Differentiate with respect to \(x\)
$$\frac { 6 x ^ { 2 } - 1 } { 2 \sqrt { x } } .$$
Edexcel C1 Q4
  1. (a) Solve the inequality
$$x ^ { 2 } + 3 x > 10$$ (b) Find the set of values of \(x\) which satisfy both of the following inequalities: $$\begin{aligned} & 3 x - 2 < x + 3
& x ^ { 2 } + 3 x > 10 \end{aligned}$$
Edexcel C1 Q5
  1. The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by the recurrence relation
$$u _ { n + 1 } = \left( u _ { n } \right) ^ { 2 } - 1 , \quad n \geq 1 .$$ Given that \(u _ { 1 } = k\), where \(k\) is a constant,
  1. find expressions for \(u _ { 2 }\) and \(u _ { 3 }\) in terms of \(k\). Given also that \(u _ { 2 } + u _ { 3 } = 11\),
  2. find the possible values of \(k\).
Edexcel C1 Q6
6. (a) By completing the square, find in terms of the constant \(k\) the roots of the equation $$x ^ { 2 } + 4 k x - k = 0$$ (b) Hence find the set of values of \(k\) for which the equation has no real roots.
Edexcel C1 Q7
7. (a) Describe fully a single transformation that maps the graph of \(y = \frac { 1 } { x }\) onto the graph of \(y = \frac { 3 } { x }\).
(b) Sketch the graph of \(y = \frac { 3 } { x }\) and write down the equations of any asymptotes.
(c) Find the values of the constant \(c\) for which the straight line \(y = c - 3 x\) is a tangent to the curve \(y = \frac { 3 } { x }\).
Edexcel C1 Q8
8. The points \(P\) and \(Q\) have coordinates \(( 7,4 )\) and \(( 9,7 )\) respectively.
  1. Find an equation for the straight line \(l\) which passes through \(P\) and \(Q\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers. The straight line \(m\) has gradient 8 and passes through the origin, \(O\).
  2. Write down an equation for \(m\). The lines \(l\) and \(m\) intersect at the point \(R\).
  3. Show that \(O P = O R\).
Edexcel C1 Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e1a283dd-c30a-45ee-af0c-429791036753-4_549_721_251_390} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = \mathrm { f } ( x )\) which crosses the \(x\)-axis at the origin and at the points \(A\) and \(B\). Given that $$f ^ { \prime } ( x ) = 6 - 4 x - 3 x ^ { 2 } ,$$
  1. find an expression for \(y\) in terms of \(x\),
  2. show that \(A B = k \sqrt { 7 }\), where \(k\) is an integer to be found.
Edexcel C1 Q10
10. A curve has the equation \(y = x + \frac { 3 } { x } , x \neq 0\). The point \(P\) on the curve has \(x\)-coordinate 1 .
  1. Show that the gradient of the curve at \(P\) is - 2 .
  2. Find an equation for the normal to the curve at \(P\), giving your answer in the form \(y = m x + c\).
  3. Find the coordinates of the point where the normal to the curve at \(P\) intersects the curve again.
Edexcel C1 Q1
1. $$f ( x ) = ( \sqrt { x } + 3 ) ^ { 2 } + ( 1 - 3 \sqrt { x } ) ^ { 2 }$$ Show that \(\mathrm { f } ( x )\) can be written in the form \(a x + b\) where \(a\) and \(b\) are integers to be found.
Edexcel C1 Q2
2. The curve \(C\) has the equation $$y = x ^ { 2 } + a x + b$$ where \(a\) and \(b\) are constants. Given that the minimum point of \(C\) has coordinates \(( - 2,5 )\), find the values of \(a\) and \(b\).
Edexcel C1 Q3
3. The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { n } = 2 ^ { n } + k n ,$$ where \(k\) is a constant. Given that \(u _ { 1 } = u _ { 3 }\),
  1. find the value of \(k\),
  2. find the value of \(u _ { 5 }\).
Edexcel C1 Q4
4. Given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 x ^ { 3 } + 1 ,$$ and that \(y = 3\) when \(x = 0\), find the value of \(y\) when \(x = 2\).
Edexcel C1 Q5
5. $$f ( x ) = 4 x - 3 x ^ { 2 } - x ^ { 3 }$$
  1. Fully factorise \(4 x - 3 x ^ { 2 } - x ^ { 3 }\).
  2. Sketch the curve \(y = \mathrm { f } ( x )\), showing the coordinates of any points of intersection with the coordinate axes.