Questions C1 (1442 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C1 Q2
2 Find the equation of the straight line which is parallel to the line \(y = 3 x + 5\) and which goes through the point \(( 2,12 )\).
OCR MEI C1 Q3
3 Find the term which has the highest coefficient in the expansion of \(( 1 + x ) ^ { 8 }\).
OCR MEI C1 Q4
4 The surface area of the surface of a cylinder is given by the formula $$A = 2 \pi r ( r + h )$$ Rearrange this formula so that \(h\) is the subject.
OCR MEI C1 Q5
5 Solve the following equations.
  1. \(\quad 2 ^ { x } = \frac { 1 } { 8 }\).
  2. \(\quad x ^ { - \frac { 1 } { 2 } } = \frac { 1 } { 4 }\)
OCR MEI C1 Q6
6 Find the positive integer values of \(x\) for which $$\frac { 1 } { 2 } ( 26 - 2 x ) \geq 2 ( 3 + x )$$
OCR MEI C1 Q7
7 The remainder when \(x ^ { 3 } - 2 x + 4\) is divided by ( \(x - 2\) ) is twice the remainder when \(x ^ { 2 } + x + k\) is divided by ( \(x + 1\) ).
Find the value of \(k\).
OCR MEI C1 Q8
8 Find the values of \(a\) and \(b\) for which \(\frac { 4 } { ( 2 \sqrt { 3 } - 1 ) } = a + b \sqrt { 3 }\).
OCR MEI C1 Q9
9 Find the coordinates of the points where the curve \(y = x ^ { 2 } - 2 x - 8\) meets the line \(y = x + 2\).
OCR MEI C1 Q10
10 The diagram shows the graph of \(y = \mathrm { f } ( x )\).
\includegraphics[max width=\textwidth, alt={}, center]{4c556b8e-1a19-4480-bf2a-0ef9e67f98b4-3_507_1085_933_383} A is the minimum point of the curve at \(( 3 , - 4 )\) and B is the point \(( 5,0 )\).
On separate diagrams on graph paper, draw the graphs of the following. In each case give the coordinates of the images of the points A and B .
  1. \(\quad y = \mathrm { f } ( x ) + 2\),
  2. \(y = \mathrm { f } ( x + 2 )\).
OCR MEI C1 Q11
11 Fig. 11 shows the graph of \(y = a x ^ { 2 } + b x + c\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4c556b8e-1a19-4480-bf2a-0ef9e67f98b4-4_572_1509_465_285} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure}
  1. Explain why a must be negative.
  2. State two factors of \(y = a x ^ { 2 } + b x + c\).
  3. Hence, or otherwise, find the values of \(a , b\) and \(c\). Another function is given by \(y = x ^ { 2 } - 4 x + 10\).
  4. Write this in completed square form.
  5. Explain why the graphs of these two functions never meet.
OCR MEI C1 Q12
12 The function \(\mathrm { f } ( x )\) is given by \(\mathrm { f } ( x ) = x ^ { 3 } + 6 x ^ { 2 } + 5 x - 12\).
  1. Show that \(( x + 3 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Find the other factors of \(\mathrm { f } ( x )\).
  3. State the coordinates where the graph of \(y = \mathrm { f } ( x )\) cuts the \(x\) axis. Hence sketch the graph of \(y = \mathrm { f } ( x )\).
  4. On the same graph sketch also \(y = x ( x - 1 ) ( x - 2 )\) Label the two points of intersection of the two curves A and B .
  5. By equating the two curves, show that the \(x\) coordinates of A and B satisfy the equation \(3 x ^ { 2 } + x - 4 = 0\).
    Solve this equation to find the \(x\)-coordinates of A and B .
OCR MEI C1 Q13
13 In Fig.13, XP and XQ are the perpendicular bisectors of AC and BC respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4c556b8e-1a19-4480-bf2a-0ef9e67f98b4-5_409_768_383_604} \captionsetup{labelformat=empty} \caption{Fig. 13}
\end{figure}
  1. Find the coordinates of X .
  2. Hence show that \(\mathrm { AX } = \mathrm { BX } = \mathrm { CX }\).
  3. The circumcircle of a triangle is the circle which passes through the vertices of the triangle.
    Write down the equation of the circumcircle of the triangle ABC .
  4. Find the coordinates of the points where the circle cuts the \(x\) axis.
OCR C1 Q1
  1. Find the value of \(y\) such that
$$4 ^ { y + 3 } = 8$$
OCR C1 Q2
  1. Express
$$\frac { 2 } { 3 \sqrt { 5 } + 7 }$$ in the form \(a + b \sqrt { 5 }\) where \(a\) and \(b\) are rational.
OCR C1 Q3
3. A circle has the equation $$x ^ { 2 } + y ^ { 2 } - 6 y - 7 = 0$$
  1. Find the coordinates of the centre of the circle.
  2. Find the radius of the circle.
OCR C1 Q4
4. (i) Express \(x ^ { 2 } + 6 x + 7\) in the form \(( x + a ) ^ { 2 } + b\).
(ii) State the coordinates of the vertex of the curve \(y = x ^ { 2 } + 6 x + 7\).
OCR C1 Q5
5. Solve the simultaneous equations $$\begin{aligned} & x + y = 2
& 3 x ^ { 2 } - 2 x + y ^ { 2 } = 2 \end{aligned}$$
OCR C1 Q6
6.
\includegraphics[max width=\textwidth, alt={}]{e90356f2-7485-4a25-80c5-84e48ceddd62-2_472_753_248_456}
The diagram shows the curve with equation \(y = 3 x - x ^ { \frac { 3 } { 2 } } , x \geq 0\). The curve meets the \(x\)-axis at the origin and at the point \(A\) and has a maximum at the point \(B\).
  1. Find the \(x\)-coordinate of \(A\).
  2. Find the coordinates of \(B\).
OCR C1 Q7
7. (i) Calculate the discriminant of \(x ^ { 2 } - 6 x + 12\).
(ii) State the number of real roots of the equation \(x ^ { 2 } - 6 x + 12 = 0\) and hence, explain why \(x ^ { 2 } - 6 x + 12\) is always positive.
(iii) Show that the line \(y = 8 - 2 x\) is a tangent to the curve \(y = x ^ { 2 } - 6 x + 12\).
OCR C1 Q8
8. $$f ( x ) = x ^ { 3 } - 6 x ^ { 2 } + 5 x + 12$$
  1. Show that $$( x + 1 ) ( x - 3 ) ( x - 4 ) \equiv x ^ { 3 } - 6 x ^ { 2 } + 5 x + 12 .$$
  2. Sketch the curve \(y = \mathrm { f } ( x )\), showing the coordinates of any points of intersection with the coordinate axes.
  3. Showing the coordinates of any points of intersection with the coordinate axes, sketch on separate diagrams the curves
    1. \(\quad y = \mathrm { f } ( x + 3 )\),
    2. \(y = \mathrm { f } ( - x )\).
OCR C1 Q9
9. A curve has the equation \(y = \frac { x } { 2 } + 3 - \frac { 1 } { x } , x \neq 0\). The point \(A\) on the curve has \(x\)-coordinate 2 .
  1. Find the gradient of the curve at \(A\).
  2. Show that the tangent to the curve at \(A\) has equation $$3 x - 4 y + 8 = 0$$ The tangent to the curve at the point \(B\) is parallel to the tangent at \(A\).
  3. Find the coordinates of \(B\).
OCR C1 Q10
10. The straight line \(l\) has gradient 3 and passes through the point \(A ( - 6,4 )\).
  1. Find an equation for \(l\) in the form \(y = m x + c\). The straight line \(m\) has the equation \(x - 7 y + 14 = 0\).
    Given that \(m\) crosses the \(y\)-axis at the point \(B\) and intersects \(l\) at the point \(C\),
  2. find the coordinates of \(B\) and \(C\),
  3. show that \(\angle B A C = 90 ^ { \circ }\),
  4. find the area of triangle \(A B C\).
OCR C1 Q1
  1. Find the set of values of the constant \(k\) such that the equation
$$x ^ { 2 } - 6 x + k = 0$$ has real and distinct roots.
OCR C1 Q2
2. The points \(A , B\) and \(C\) have coordinates \(( - 3,0 ) , ( 5 , - 2 )\) and \(( 4,1 )\) respectively. Find an equation for the straight line which passes through \(C\) and is parallel to \(A B\). Give your answer in the form \(a x + b y = c\), where \(a , b\) and \(c\) are integers.
OCR C1 Q3
3. (i) Express \(\frac { 18 } { \sqrt { 3 } }\) in the form \(k \sqrt { 3 }\).
(ii) Express \(( 1 - \sqrt { 3 } ) ( 4 - 2 \sqrt { 3 } )\) in the form \(a + b \sqrt { 3 }\) where \(a\) and \(b\) are integers.