13 In Fig.13, XP and XQ are the perpendicular bisectors of AC and BC respectively.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4c556b8e-1a19-4480-bf2a-0ef9e67f98b4-5_409_768_383_604}
\captionsetup{labelformat=empty}
\caption{Fig. 13}
\end{figure}
- Find the coordinates of X .
- Hence show that \(\mathrm { AX } = \mathrm { BX } = \mathrm { CX }\).
- The circumcircle of a triangle is the circle which passes through the vertices of the triangle.
Write down the equation of the circumcircle of the triangle ABC . - Find the coordinates of the points where the circle cuts the \(x\) axis.