Questions — SPS (1106 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
SPS SPS SM Statistics 2025 January Q8
8. 80 randomly chosen people are asked to estimate a time interval of 60 seconds without using a watch or clock. The mean of the 80 estimates is 58.9 seconds. Previous evidence shows that the population standard deviation of such estimates is 5.0 seconds. Test, at the \(5 \%\) significance level, whether there is evidence that people tend to underestimate the time interval.
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q1
  1. The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are defined as follows:
$$\mathbf { A } = \left( \begin{array} { l } 1
SPS SPS FM Pure 2025 February Q3
3 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { r r r } 2 & 0 & 3
1 & - 1 & 3 \end{array} \right) , \quad \mathbf { C } = \left( \begin{array} { l l } 1 & 3 \end{array} \right)$$ Calculate all possible products formed from two of these three matrices.
[0pt] [BLANK PAGE]
2. The complex number \(z\) satisfies the equation \(z ^ { 2 } - 4 \mathrm { i } z ^ { * } + 11 = 0\). Given that \(\operatorname { Re } ( z ) > 0\), find \(z\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real numbers.
[0pt] [BLANK PAGE]
3. Prove by mathematical induction that \(\sum _ { r = 1 } ^ { n } ( r \times r ! ) = ( n + 1 ) ! - 1\) for all positive integers \(n\).
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q4
4. The cubic equation $$2 x ^ { 3 } + 6 x ^ { 2 } - 3 x + 12 = 0$$ has roots \(\alpha , \beta\) and \(\gamma\).
Without solving the equation, find the cubic equation whose roots are ( \(\alpha + 3\) ), ( \(\beta + 3\) ) and \(( \gamma + 3 )\), giving your answer in the form \(p w ^ { 3 } + q w ^ { 2 } + r w + s = 0\), where \(p , q , r\) and \(s\) are integers to be found.
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q5
5. In an Argand diagram, the points \(A\) and \(B\) are represented by the complex numbers \(- 3 + 2 \mathrm { i }\) and \(5 - 4 \mathrm { i }\) respectively. The points \(A\) and \(B\) are the end points of a diameter of a circle \(C\).
  1. Find the equation of \(C\), giving your answer in the form $$| z - a | = b \quad a \in \mathbb { C } , b \in \mathbb { R }$$ The circle \(D\), with equation \(| z - 2 - 3 \mathrm { i } | = 2\), intersects \(C\) at the points representing the complex numbers \(z _ { 1 }\) and \(z _ { 2 }\)
  2. Find the complex numbers \(z _ { 1 }\) and \(z _ { 2 }\)
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q6
6. $$\mathrm { f } ( z ) = 3 z ^ { 3 } + p z ^ { 2 } + 57 z + q$$ where \(p\) and \(q\) are real constants.
Given that \(3 - 2 \sqrt { 2 } \mathrm { i }\) is a root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. show all the roots of \(\mathrm { f } ( z ) = 0\) on a single Argand diagram,
  2. find the value of \(p\) and the value of \(q\).
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q7
2 marks
7. Line \(l _ { 1 }\) has Cartesian equation $$x - 3 = \frac { 2 y + 2 } { 3 } = 2 - z$$
  1. Write the equation of line \(l _ { 1 }\) in the form $$\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }$$ where \(\lambda\) is a parameter and \(\mathbf { a }\) and \(\mathbf { b }\) are vectors to be found.
    [0pt] [2 marks]
  2. Line \(l _ { 2 }\) passes through the points \(P ( 3,2,0 )\) and \(Q ( n , 5 , n )\), where \(n\) is a constant.
    1. Show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) are not perpendicular.
  3. (ii) Explain briefly why lines \(l _ { 1 }\) and \(l _ { 2 }\) cannot be parallel.
  4. (iii) Given that \(\theta\) is the acute angle between lines \(l _ { 1 }\) and \(l _ { 2 }\), show that $$\cos \theta = \frac { p } { \sqrt { 34 n ^ { 2 } + q n + 306 } }$$ where \(p\) and \(q\) are constants to be found.
    [0pt] [BLANK PAGE]
    [0pt] [ADDITIONAL SPACE FOR QUESTION 7]
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q8
8. Find the invariant line of the transformation of the \(x - y\) plane represented by the matrix \(\left( \begin{array} { r r } 2 & 0
4 & - 1 \end{array} \right)\).
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q9
9. $$\mathrm { f } ( z ) = z ^ { 3 } - 8 z ^ { 2 } + p z - 24$$ where \(p\) is a real constant.
Given that the equation \(\mathrm { f } ( z ) = 0\) has distinct roots $$\alpha , \beta \text { and } \left( \alpha + \frac { 12 } { \alpha } - \beta \right)$$
  1. solve completely the equation \(\mathrm { f } ( z ) = 0\)
  2. Hence find the value of \(p\).
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q1
  1. The complex number \(z\) satisfies the equation \(z ^ { 2 } - 4 \mathrm { i } z ^ { * } + 11 = 0\).
Given that \(\operatorname { Re } ( z ) > 0\), find \(z\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real numbers.
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q2
2. Prove by mathematical induction that \(\sum _ { r = 1 } ^ { n } ( r \times r ! ) = ( n + 1 ) ! - 1\) for all positive integers \(n\).
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q3
3. The curve \(C\) has equation $$y = 31 \sinh x - 2 \sinh 2 x \quad x \in \mathbb { R }$$ Determine, in terms of natural logarithms, the exact \(x\) coordinates of the stationary points of \(C\).
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q4
4. The plane \(\Pi _ { 1 }\) has equation $$\mathbf { r } = 2 \mathbf { i } + 4 \mathbf { j } - \mathbf { k } + \lambda ( \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k } ) + \mu ( - \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Find a Cartesian equation for \(\Pi _ { 1 }\) The line \(l\) has equation $$\frac { x - 1 } { 5 } = \frac { y - 3 } { - 3 } = \frac { z + 2 } { 4 }$$
  2. Find the coordinates of the point of intersection of \(l\) with \(\Pi _ { 1 }\) The plane \(\Pi _ { 2 }\) has equation $$\mathbf { r } \cdot ( 2 \mathbf { i } - \mathbf { j } + 3 \mathbf { k } ) = 5$$
  3. Find, to the nearest degree, the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\)
    [0pt] [BLANK PAGE]
    [0pt] [ADDITIONAL SPACE FOR QUESTION 4]
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q7
7. The equation of a curve, in polar coordinates, is $$r = \sec \theta + \tan \theta , \quad \text { for } 0 \leqslant \theta \leqslant \frac { 1 } { 3 } \pi$$
  1. Sketch the curve.
  2. Find the exact area of the region bounded by the curve and the lines \(\theta = 0\) and \(\theta = \frac { 1 } { 3 } \pi\).
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q8
5 marks
8. (a) Solve the equation \(z ^ { 3 } = \sqrt { 2 } - \sqrt { 6 } \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(r > 0\) and \(0 \leq \theta < 2 \pi\)
[0pt] [5 marks]
(b) The transformation represented by the matrix \(\mathbf { M } = \left[ \begin{array} { l l } 5 & 1
1 & 3 \end{array} \right]\) acts on the points on an Argand Diagram which represent the roots of the equation in part (a). Find the exact area of the shape formed by joining the transformed points.
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q9
9. In this question, you must show detailed reasoning. Find the sum of all the integers from 1 to 999 inclusive that are not square or cube numbers.
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q10
10. Three planes have equations $$\begin{array} { r } 4 x - 5 y + z = 8
3 x + 2 y - k z = 6
( k - 2 ) x + k y - 8 z = 6 \end{array}$$ where \(k\) is a real constant.
The planes do not meet at a unique point.
  1. Find the possible values of \(k\).
  2. For each value of \(k\) found in part (a), identify the configuration of the given planes. Fully justify your answer, stating in each case whether or not the equations of the planes form a consistent system.
    [0pt] [BLANK PAGE]
    [0pt] [ADDITIONAL SPACE FOR QUESTION 10]
    [0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q11
11. The infinite series C and S are defined by $$\begin{aligned} & \mathrm { C } = \cos \theta + \frac { 1 } { 2 } \cos 5 \theta + \frac { 1 } { 4 } \cos 9 \theta + \frac { 1 } { 8 } \cos 13 \theta + \ldots
& \mathrm { S } = \sin \theta + \frac { 1 } { 2 } \sin 5 \theta + \frac { 1 } { 4 } \sin 9 \theta + \frac { 1 } { 8 } \sin 13 \theta + \ldots \end{aligned}$$ Given that the series C and S are both convergent,
  1. show that $$C + i S = \frac { 2 e ^ { i \theta } } { 2 - e ^ { 4 i \theta } }$$
  2. Hence show that $$\mathrm { S } = \frac { 4 \sin \theta + 2 \sin 3 \theta } { 5 - 4 \cos 4 \theta }$$ [BLANK PAGE]
SPS SPS FM Pure 2025 February Q12
12. The population density \(P\), in suitable units, of a certain bacterium at time \(t\) hours is to be modelled by a differential equation. Initially, the population density is zero, and its long-term value is 5 . The model uses the differential equation $$\frac { d P } { d t } - \frac { P } { t \left( 1 + t ^ { 2 } \right) } = \frac { t e ^ { - t } } { \sqrt { 1 + t ^ { 2 } } }$$ Find \(P\) as a function of \(t\). [You may assume that \(\lim _ { t \rightarrow \infty } t e ^ { - t } = 0\) ].
[0pt] [BLANK PAGE]
SPS SPS FM Pure 2025 February Q13
13. (a) Write down the Maclaurin series of \(\mathrm { e } ^ { x }\), in ascending power of \(x\), up to and including the term in \(x ^ { 3 }\)
(b) Hence, without differentiating, determine the Maclaurin series of $$\mathrm { e } ^ { \left( \mathrm { e } ^ { x } - 1 \right) }$$ in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), giving each coefficient in simplest form.
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
[0pt] [BLANK PAGE]
SPS SPS SM Pure 2025 February Q1
  1. The circle \(C\) has equation
$$x ^ { 2 } + y ^ { 2 } + 4 x - 30 y + 209 = 0$$ Find
  1. the coordinates of the centre of \(C\),
  2. the exact value of the radius of \(C\).
    coordinates of the centre of C
    radius of \(C\)
SPS SPS SM Pure 2025 February Q2
2. (a) Find, in terms of \(a\), the first 3 terms, in ascending powers of \(x\), of the binomial expansion of $$( 2 + a x ) ^ { 6 }$$ where \(a\) is a non-zero constant. Give each term in simplest form. $$f ( x ) = \left( 3 + \frac { 1 } { x } \right) ^ { 2 } ( 2 + a x ) ^ { 6 }$$ Given that the constant term in the expansion of \(\mathrm { f } ( x )\) is 576
(b) find the value of \(a\). \section*{3. In this question you must show all stages of your working.} \section*{Solutions relying entirely on calculator technology are not acceptable.} The curve \(C\) has equation $$y = 4 x ^ { \frac { 1 } { 2 } } + 9 x ^ { - \frac { 1 } { 2 } } + 3 \quad x > 0$$ (a) Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) giving each term in simplest form.
(b) Hence find the \(x\) coordinate of the stationary point of \(C\).
(c) Determine the nature of the stationary point of \(C\), giving a reason for your answer.
(d) State the range of values of \(x\) for which \(y\) is decreasing.
(Total for Question 3 is 7 marks)
SPS SPS SM Pure 2025 February Q4
4. In this question you must show all stages of your working. \section*{Solutions relying entirely on calculator technology are not acceptable.} Solve, for \(0 < \theta \leq 360 ^ { \circ }\), the equation $$3 \tan ^ { 2 } \theta + 7 \sec \theta - 3 = 0$$ giving your answers to one decimal place.
(Total for Question 4 is 4 marks)
SPS SPS SM Pure 2025 February Q5
5. The number of bacteria on a surface is being monitored. The number of bacteria, \(N\), on the surface, \(t\) hours after monitoring began is modelled by the equation $$\log _ { 10 } N = 0.35 t + 2$$ Use the equation of the model to answer parts (a) to (c).
  1. Find the initial number of bacteria on the surface.
  2. Show that the equation of the model can be written in the form $$N = a b ^ { t }$$ where \(a\) and \(b\) are constants to be found. Give the value of \(b\) to 2 decimal places.
  3. Hence find the rate of growth of bacteria on the surface exactly 5 hours after monitoring began.
SPS SPS SM Pure 2025 February Q6
6. The region bounded by the curve $$y = ( 2 x - 8 ) \ln x$$ and the \(x\)-axis is shaded in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{bc7fb499-9462-40ae-88f4-87fc60f6a005-12_871_913_422_575} Show that the exact area is given by $$32 \ln 2 - \frac { 33 } { 2 }$$ Fully justify your answer.