SPS SPS FM Pure 2025 February — Question 11

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2025
SessionFebruary
TopicComplex numbers 2

11. The infinite series C and S are defined by $$\begin{aligned} & \mathrm { C } = \cos \theta + \frac { 1 } { 2 } \cos 5 \theta + \frac { 1 } { 4 } \cos 9 \theta + \frac { 1 } { 8 } \cos 13 \theta + \ldots
& \mathrm { S } = \sin \theta + \frac { 1 } { 2 } \sin 5 \theta + \frac { 1 } { 4 } \sin 9 \theta + \frac { 1 } { 8 } \sin 13 \theta + \ldots \end{aligned}$$ Given that the series C and S are both convergent,
  1. show that $$C + i S = \frac { 2 e ^ { i \theta } } { 2 - e ^ { 4 i \theta } }$$
  2. Hence show that $$\mathrm { S } = \frac { 4 \sin \theta + 2 \sin 3 \theta } { 5 - 4 \cos 4 \theta }$$ [BLANK PAGE]