| Exam Board | SPS |
| Module | SPS FM Pure (SPS FM Pure) |
| Year | 2025 |
| Session | February |
| Topic | Proof by induction |
3
\end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { r r r }
2 & 0 & 3
1 & - 1 & 3
\end{array} \right) , \quad \mathbf { C } = \left( \begin{array} { l l }
1 & 3
\end{array} \right)$$
Calculate all possible products formed from two of these three matrices.
[0pt]
[BLANK PAGE]
2. The complex number \(z\) satisfies the equation \(z ^ { 2 } - 4 \mathrm { i } z ^ { * } + 11 = 0\).
Given that \(\operatorname { Re } ( z ) > 0\), find \(z\) in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real numbers.
[0pt]
[BLANK PAGE]
3.
Prove by mathematical induction that \(\sum _ { r = 1 } ^ { n } ( r \times r ! ) = ( n + 1 ) ! - 1\) for all positive integers \(n\).
[0pt]
[BLANK PAGE]