Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q4
4 Prove or disprove the following statement:
'No cube of an integer has 2 as its units digit.'
OCR MEI C3 Q5
5 Use the triangle in Fig. 4 to prove that \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta = 1\). For what values of \(\theta\) is this proof valid? \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{64cb5e15-35b0-43a3-9f6d-f8e1c04b80b8-1_357_595_1831_798} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
OCR MEI C3 Q6
6
  1. Multiply out \(\left( 3 ^ { n } + 1 \right) \left( 3 ^ { n } - 1 \right)\).
  2. Hence prove that if \(n\) is a positive integer then \(3 ^ { 2 n } - 1\) is divisible by 8 .
OCR MEI C3 Q7
7 State whether the following statements are true or false; if false, provide a counterexample.
  1. If \(a\) is rational and \(b\) is rational, then \(a + b\) is rational.
  2. If \(a\) is rational and \(b\) is irrational, then \(a + b\) is irrational.
  3. If \(a\) is irrational and \(b\) is irrational, then \(a + b\) is irrational.
OCR MEI C3 Q8
8
  1. Disprove the following statement.
    'If \(p > q\), then \(\frac { 1 } { p } < \frac { 1 } { q }\).
  2. State a condition on \(p\) and \(q\) so that the statement is true.
  3. Show that
OCR MEI C3 Q11
11 Use the method of exhaustion to prove the following result.
No 1 - or 2 -digit perfect square ends in \(2,3,7\) or 8
State a generalisation of this result.
OCR MEI C3 Q12
12 Prove that the following statement is false.
For all integers \(n\) greater than or equal to \(1 , n ^ { 2 } + 3 n + 1\) is a prime number.
OCR MEI C3 Q13
13 Positive integers \(a , b\) and \(c\) are said to form a Pythagorean triple if \(a ^ { 2 } + b ^ { 2 } = c ^ { 2 }\).
  1. Given that \(t\) is an integer greater than 1 , show that \(2 t , t ^ { 2 } - 1\) and \(t ^ { 2 } + 1\) form a Pythagorean triple.
  2. The two smallest integers of a Pythagorean triple are 20 and 21. Find the third integer. Use this triple to show that not all Pythagorean triples can be expressed in the form \(2 t , t ^ { 2 } - 1\) and \(t ^ { 2 } + 1\).
OCR MEI C3 2009 January Q1
1 Solve the inequality \(| x - 1 | < 3\).
OCR MEI C3 2009 January Q2
2
  1. Differentiate \(x \cos 2 x\) with respect to \(x\).
  2. Integrate \(x \cos 2 x\) with respect to \(x\).
OCR MEI C3 2009 January Q3
3 Given that \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \ln ( x - 1 )\) and \(\mathrm { g } ( x ) = 1 + \mathrm { e } ^ { 2 x }\), show that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
OCR MEI C3 2009 January Q4
4 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
OCR MEI C3 2009 January Q5
5
  1. State the period of the function \(\mathrm { f } ( x ) = 1 + \cos 2 x\), where \(x\) is in degrees.
  2. State a sequence of two geometrical transformations which maps the curve \(y = \cos x\) onto the curve \(y = \mathrm { f } ( x )\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(- 180 ^ { \circ } < x < 180 ^ { \circ }\).
OCR MEI C3 2009 January Q6
6
  1. Disprove the following statement. $$\text { 'If } p > q \text {, then } \frac { 1 } { p } < \frac { 1 } { q } \text {. }$$
  2. State a condition on \(p\) and \(q\) so that the statement is true.
OCR MEI C3 2009 January Q7
7 The variables \(x\) and \(y\) satisfy the equation \(x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } = 5\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \left( \frac { y } { x } \right) ^ { \frac { 1 } { 3 } }\). Both \(x\) and \(y\) are functions of \(t\).
  2. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) when \(x = 1 , y = 8\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 6\). Section B (36 marks)
OCR MEI C3 2009 January Q8
8 Fig. 8 shows the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\). P is the point on this curve with \(x\)-coordinate 1 , and R is the point \(\left( 0 , - \frac { 7 } { 8 } \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-3_1022_995_479_575} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the gradient of PR.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that PR is a tangent to the curve.
  3. Find the exact coordinates of the turning point Q .
  4. Differentiate \(x \ln x - x\). Hence, or otherwise, show that the area of the region enclosed by the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\), the \(x\)-axis and the lines \(x = 1\) and \(x = 2\) is \(\frac { 59 } { 24 } - \frac { 1 } { 4 } \ln 2\).
OCR MEI C3 2009 January Q9
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \sqrt { 2 x - x ^ { 2 } } }\).
The curve has asymptotes \(x = 0\) and \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-4_655_800_431_669} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find \(a\). Hence write down the domain of the function.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 1 } { \left( 2 x - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the coordinates of the turning point of the curve, and write down the range of the function. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  3. (A) Show algebraically that \(\mathrm { g } ( x )\) is an even function.
    (B) Show that \(\mathrm { g } ( x - 1 ) = \mathrm { f } ( x )\).
    (C) Hence prove that the curve \(y = \mathrm { f } ( x )\) is symmetrical, and state its line of symmetry.
OCR MEI C3 2010 January Q1
1 Solve the equation \(\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } = 0\).
OCR MEI C3 2010 January Q2
2 The temperature \(T\) in degrees Celsius of water in a glass \(t\) minutes after boiling is modelled by the equation \(T = 20 + b \mathrm { e } ^ { - k t }\), where \(b\) and \(k\) are constants. Initially the temperature is \(100 ^ { \circ } \mathrm { C }\), and after 5 minutes the temperature is \(60 ^ { \circ } \mathrm { C }\).
  1. Find \(b\) and \(k\).
  2. Find at what time the temperature reaches \(50 ^ { \circ } \mathrm { C }\).
OCR MEI C3 2010 January Q3
3
  1. Given that \(y = \sqrt [ 3 ] { 1 + 3 x ^ { 2 } }\), use the chain rule to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
  2. Given that \(y ^ { 3 } = 1 + 3 x ^ { 2 }\), use implicit differentiation to find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Show that this result is equivalent to the result in part (i).
OCR MEI C3 2010 January Q4
4 Evaluate the following integrals, giving your answers in exact form.
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\).
OCR MEI C3 2010 January Q5
5 The curves in parts (i) and (ii) have equations of the form \(y = a + b \sin c x\), where \(a , b\) and \(c\) are constants. For each curve, find the values of \(a , b\) and \(c\).

  1. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_455_679_1800_365}

  2. \includegraphics[max width=\textwidth, alt={}, center]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-2_374_679_2311_365}
OCR MEI C3 2010 January Q6
6 Write down the conditions for \(\mathrm { f } ( x )\) to be an odd function and for \(\mathrm { g } ( x )\) to be an even function.
Hence prove that, if \(\mathrm { f } ( x )\) is odd and \(\mathrm { g } ( x )\) is even, then the composite function \(\mathrm { gf } ( x )\) is even.
OCR MEI C3 2010 January Q7
7 Given that \(\arcsin x = \arccos y\), prove that \(x ^ { 2 } + y ^ { 2 } = 1\). [Hint: let \(\arcsin x = \theta\).] Section B (36 marks)
OCR MEI C3 2010 January Q8
8 Fig. 8 shows part of the curve \(y = x \cos 3 x\).
The curve crosses the \(x\)-axis at \(\mathrm { O } , \mathrm { P }\) and Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b3e20ee-457c-46be-b2e5-12573bee2fbf-3_551_1189_925_479} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P and Q .
  2. Find the exact gradient of the curve at the point P . Show also that the turning points of the curve occur when \(x \tan 3 x = \frac { 1 } { 3 }\).
  3. Find the area of the region enclosed by the curve and the \(x\)-axis between O and P , giving your answer in exact form.