Questions — Edexcel (9685 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel F2 2021 October Q5
8 marks Standard +0.8
5. Given that \(y = \tan ^ { 2 } x\)
  1. show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = 8 \tan x \sec ^ { 2 } x \left( p \sec ^ { 2 } x + q \right)$$ where \(p\) and \(q\) are integers to be determined.
  2. Hence determine the Taylor series expansion about \(\frac { \pi } { 3 }\) of \(\tan ^ { 2 } x\) in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 3 }\), giving each coefficient in simplest form.
    \includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-19_33_407_306_258} \includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-19_58_458_2752_150}
Edexcel F2 2021 October Q6
9 marks Challenging +1.2
6. The complex number \(z\) on an Argand diagram is represented by the point \(P\) where $$| z + 1 - 13 i | = 3 | z - 7 - 5 i |$$ Given that the locus of \(P\) is a circle,
  1. determine the centre and radius of this circle. The complex number \(w\), on the same Argand diagram, is represented by the point \(Q\), where $$\arg ( w - 8 - 6 \mathrm { i } ) = - \frac { 3 \pi } { 4 }$$ Given that the locus of \(P\) intersects the locus of \(Q\) at the point \(R\),
  2. determine the complex number representing \(R\).
Edexcel F2 2021 October Q7
11 marks Challenging +1.2
7. (a) Show that the transformation \(x = t ^ { 2 }\) transforms the differential equation $$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 15 y = 15 x$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } - 15 y = 15 t ^ { 2 }$$ (b) Solve differential equation (II) to determine \(y\) in terms of \(t\).
(c) Hence determine the general solution of differential equation (I). \includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-24_2258_53_308_1980}
Edexcel F2 2021 October Q8
11 marks Challenging +1.8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-28_735_892_264_529} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\) shown in Figure 1 has polar equation $$r = 1 + \sin \theta \quad - \frac { \pi } { 2 } < \theta \leqslant \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) such that the tangent to \(C\) at \(P\) is perpendicular to the initial line.
  1. Use calculus to determine the polar coordinates of \(P\). The tangent to \(C\) at the point \(Q\) where \(\theta = \frac { \pi } { 2 }\) is parallel to the initial line.
    The tangent to \(C\) at \(Q\) meets the tangent to \(C\) at \(P\) at the point \(S\), as shown in Figure 1.
    The finite region \(R\), shown shaded in Figure 1, is bounded by the line segments \(Q S , S P\) and the curve \(C\).
  2. Use algebraic integration to show that the area of \(R\) is $$\frac { 1 } { 32 } ( a \sqrt { 3 } + b \pi )$$ where \(a\) and \(b\) are integers to be determined.
    (6)
Edexcel F2 2021 October Q9
9 marks Standard +0.8
  1. (a) Show that
$$n ^ { 5 } - ( n - 1 ) ^ { 5 } \equiv 5 n ^ { 4 } - 10 n ^ { 3 } + 10 n ^ { 2 } - 5 n + 1$$ (b) Hence, using the method of differences, show that for all integer values of \(n\), $$\sum _ { r = 1 } ^ { n } r ^ { 4 } = \frac { 1 } { 30 } n ( n + 1 ) ( 2 n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(a\), \(b\) and \(c\) are integers to be determined.
Edexcel F2 2018 Specimen Q2
5 marks Standard +0.8
  1. (a) Express \(\frac { 1 } { ( r + 6 ) ( r + 8 ) }\) in partial fractions.
    (b) Hence show that
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { ( r + 6 ) ( r + 8 ) } = \frac { n ( a n + b ) } { 56 ( n + 7 ) ( n + 8 ) }$$ where \(a\) and \(b\) are integers to be found.
VIIN SIHI NI JIIIM IONOOVIIV SIHI NI III HM ION OOVI4V SIHI NI JIIIM IONOO
Edexcel F2 2018 Specimen Q3
10 marks Challenging +1.2
  1. (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 x y = x \mathrm { e } ^ { - x ^ { 2 } } y ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 x z = - 2 x \mathrm { e } ^ { - x ^ { 2 } }$$ (b) Solve differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence find the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
VIIIV SIHI NI J14M 10N OCVIIN SIHI NI III HM ION OOVERV SIHI NI JIIIM ION OO
Edexcel F2 2018 Specimen Q4
9 marks Challenging +1.2
  1. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by
$$w = \frac { z - 1 } { z + 1 } , \quad z \neq - 1$$ The line in the \(z\)-plane with equation \(y = 2 x\) is mapped by \(T\) onto the curve \(C\) in the \(w\)-plane.
  1. Show that \(C\) is a circle and find its centre and radius. The region \(y < 2 x\) in the \(z\)-plane is mapped by \(T\) onto the region \(R\) in the \(w\)-plane.
  2. Sketch circle \(C\) on an Argand diagram and shade and label region \(R\).
    VIIIV SIHI NI IIIYM ION OCVIIV SIHI NI JIIIM ION OCVEXV SIHIL NI JIIIM ION OO
Edexcel F2 2018 Specimen Q5
9 marks Challenging +1.2
  1. Given that \(y = \cot x\),
    1. show that
    $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 \cot x + 2 \cot ^ { 3 } x$$
  2. Hence show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = p \cot ^ { 4 } x + q \cot ^ { 2 } x + r$$ where \(p , q\) and \(r\) are integers to be found.
  3. Find the Taylor series expansion of \(\cot x\) in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 3 }\).
    VIIIV SIHI NI J14M 10N OCVIIN SIHI NI III HM ION OOVERV SIHI NI JIIIM ION OO
Edexcel F2 2018 Specimen Q6
13 marks Challenging +1.2
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 2 \sin x$$ Given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\) (b) find the particular solution of differential equation (I).
Edexcel F2 2018 Specimen Q7
8 marks Challenging +1.2
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b197811e-1df5-4937-b0d8-f98f82412c76-24_480_926_217_511} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the two curves given by the polar equations $$\begin{array} { l l } r = \sqrt { 3 } \sin \theta , & 0 \leqslant \theta \leqslant \pi \\ r = 1 + \cos \theta , & 0 \leqslant \theta \leqslant \pi \end{array}$$
  1. Verify that the curves intersect at the point \(P\) with polar coordinates \(\left( \frac { 3 } { 2 } , \frac { \pi } { 3 } \right)\). The region \(R\), bounded by the two curves, is shown shaded in Figure 1.
  2. Use calculus to find the exact area of \(R\), giving your answer in the form \(a ( \pi - \sqrt { 3 } )\), where \(a\) is a constant to be found.
    VIIIV SIHI NI JIIIM ION OCVIIIV SIHI NI JIHM I I ON OCVI4V SIHI NI JIIYM IONOO
Edexcel F2 2018 Specimen Q8
14 marks Challenging +1.2
  1. (a) Show that
$$\left( z + \frac { 1 } { z } \right) ^ { 3 } \left( z - \frac { 1 } { z } \right) ^ { 3 } = z ^ { 6 } - \frac { 1 } { z ^ { 6 } } - k \left( z ^ { 2 } - \frac { 1 } { z ^ { 2 } } \right)$$ where \(k\) is a constant to be found. Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), where \(\theta\) is real,
(b) show that
  1. \(z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta\)
  2. \(z ^ { n } - \frac { 1 } { z ^ { n } } = 2 i \sin n \theta\) (c) Hence show that $$\cos ^ { 3 } \theta \sin ^ { 3 } \theta = \frac { 1 } { 32 } \quad ( 3 \sin 2 \theta - \sin 6 \theta )$$ (d) Find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 8 } } \cos ^ { 3 } \theta \sin ^ { 3 } \theta d \theta$$ \includegraphics[max width=\textwidth, alt={}, center]{b197811e-1df5-4937-b0d8-f98f82412c76-32_227_148_2524_1797}
Edexcel F2 Specimen Q4
10 marks Standard +0.3
4. $$z = - 8 + ( 8 \sqrt { } 3 ) \mathrm { i }$$
  1. Find the modulus of \(z\) and the argument of \(z\). Using de Moivre's theorem,
  2. find \(z ^ { 3 }\),
  3. find the values of \(w\) such that \(w ^ { 4 } = z\), giving your answers in the form \(a + \mathrm { i } b\), where \(a , b \in \mathbb { R }\).
Edexcel F2 Specimen Q5
10 marks Challenging +1.2
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cd449136-cb09-49eb-8812-c863c0e7bd4e-10_506_728_267_632} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curves given by the polar equations $$r = 2 , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ and \(\quad r = 1.5 + \sin 3 \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }\).
  1. Find the coordinates of the points where the curves intersect. The region \(S\), between the curves, for which \(r > 2\) and for which \(r < ( 1.5 + \sin 3 \theta )\), is shown shaded in Figure 1.
  2. Find, by integration, the area of the shaded region \(S\), giving your answer in the form \(a \pi + b \sqrt { 3 }\), where \(a\) and \(b\) are simplified fractions. $$\left[ \begin{array} { l l l } \text { Leave } \\ \text { blank } \\ \text { " } \\ \text { " } \end{array} & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \end{array} \right.$$
Edexcel F2 Specimen Q6
10 marks Challenging +1.2
  1. A complex number \(z\) is represented by the point \(P\) in the Argand diagram.
    1. Given that \(| z - 6 | = | z |\), sketch the locus of \(P\).
    2. Find the complex numbers \(z\) which satisfy both \(| z - 6 | = | z |\) and \(| z - 3 - 4 \mathrm { i } | = 5\).
    The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by \(w = \frac { 30 } { z }\).
  2. Show that \(T\) maps \(| z - 6 | = | z |\) onto a circle in the \(w\)-plane and give the cartesian equation of this circle.
Edexcel F2 Specimen Q7
12 marks Challenging +1.2
  1. (a) Show that the transformation \(z = y ^ { \frac { 1 } { 2 } }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } - 4 y \tan x = 2 y ^ { \frac { 1 } { 2 } }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 2 z \tan x = 1$$ (b) Solve the differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence obtain the general solution of the differential equation (I). $$\left[ \begin{array} { l l l } \text { Leave } \\ \text { blank } \\ \text { " } \\ \text { " } \\ \text { " } \end{array} & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \end{array} \right.$$
Edexcel F2 Specimen Q8
14 marks Challenging +1.3
  1. (a) Find the value of \(\lambda\) for which \(y = \lambda x \sin 5 x\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ (b) Using your answer to part (a), find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 25 y = 3 \cos 5 x$$ Given that at \(x = 0 , y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 5\),
(c) find the particular solution of this differential equation, giving your solution in the form \(y = \mathrm { f } ( x )\).
(d) Sketch the curve with equation \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant \pi\).
Edexcel FP3 Q1
6 marks Standard +0.8
  1. Find the exact values of x for which
$$4 \tanh ^ { 2 } x - 2 \operatorname { sech } ^ { 2 } x = 3 ,$$ giving your answers in the form \(\pm \ln \mathrm { a }\), where a is real.
Edexcel FP3 Q2
7 marks Challenging +1.8
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{63249f82-4eab-47bc-aeae-3af8ec737b51-2_499_828_651_621} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the curve with equation \(y = 2 \cosh \left( \frac { 1 } { 2 } x \right)\). The points \(A\) and \(B\) lie on the curve and have \(x\)-coordinates \(- \ln 2\) and \(\ln 2\) respectively. The arc of the curve joining \(A\) and \(B\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the exact area of the curved surface area formed.
(Total 7 marks)
Edexcel FP3 Q3
8 marks Challenging +1.8
3. Using the substitution \(\mathrm { x } = \frac { 3 } { \sinh \theta }\), or otherwise, find the exact value of $$\int _ { 4 } ^ { 3 \sqrt { } 3 } \frac { 1 } { x \sqrt { } \left( x ^ { 2 } + 9 \right) } d x$$ giving your answer in the form a ln b , where a and b are rational numbers.
(Total 8 marks)
Edexcel FP3 Q4
9 marks Challenging +1.2
4. \(y = \arctan ( \sqrt { } x ) , \quad x > 0,0 < y < \frac { \pi } { 2 }\).
  1. Find the value of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at \(\mathrm { x } = \frac { 1 } { 4 }\).
  2. Show that \(2 x ( 1 + x ) \frac { d ^ { 2 } y } { d x ^ { 2 } } + ( 1 + 3 x ) \frac { d y } { d x } = 0\).
Edexcel FP3 Q5
10 marks Challenging +1.8
5. $$\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { \pi } { 2 } } \sin ^ { \mathrm { n } } x \mathrm { dx } , \mathrm { n } \geqslant 0$$
  1. Show that \(I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }\), for \(n \geqslant 2\)
  2. Using the result in part (a), find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } x \sin ^ { 5 } x \cos x d x$$
Edexcel FP3 Q6
11 marks Standard +0.8
  1. Referred to a fixed origin O , the points \(\mathrm { P } , \mathrm { Q }\) and R have coordinates \(( \mathbf { i } - 3 \mathbf { j } + \mathbf { k } ) , ( - 2 \mathbf { i } + \mathbf { j } - 3 \mathbf { k } )\) and \(( 3 \mathbf { j } - 5 \mathbf { k } )\) respectively. The plane \(\Pi _ { 1 }\) passes through \(\mathrm { P } , \mathrm { Q }\) and R . Find
    1. \(\overrightarrow { \mathrm { PQ } } \times \overrightarrow { \mathrm { QR } }\),
    2. a cartesian equation of \(\Pi _ { 1 }\).
    The plane \(\Pi _ { 2 }\) has equation \(\mathbf { r }\). ( \(\mathbf { i } + \mathbf { j } - \mathbf { k }\) ) \(= 6\). The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) intersect in the line I .
  2. Find a vector equation of I, giving your answer in the form ( \(\mathbf { r } - \mathbf { a }\) ) \(\times \mathbf { b } = \mathbf { 0 }\).
Edexcel FP3 Q7
12 marks Standard +0.3
7. \(\quad \mathbf { A } = \left( \begin{array} { c c c } 2 & \mathrm { k } & 0 \\ 1 & 1 & 0 \\ 0 & - 2 & 1 \end{array} \right)\), where k is a constant. Given that \(\left( \begin{array} { c } 9 \\ 3 \\ - 2 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\),
  1. show that \(\mathrm { k } = 6\),
  2. find the eigenvalues of \(\mathbf { A }\). A transformation \(\mathrm { T } : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { A }\).
    The point P has coordinates \(( \mathrm { t } - 2 , \mathrm { t } , 2 \mathrm { t } )\) where t is a parameter.
  3. Show that, for any value of \(t\), the transformation \(T\) maps \(P\) onto a point on the line with equation \(x - 4 y - 4 = 0\) (5)
Edexcel FP3 Q8
12 marks Challenging +1.8
8. The point \(\mathrm { P } ( 5 \sec \mathrm { u } , 3 \tan \mathrm { u } )\) lies on the hyperbola H with equation \(\frac { \mathrm { x } ^ { 2 } } { 25 } - \frac { \mathrm { y } ^ { 2 } } { 9 } = 1\). The tangent to \(H\) at \(P\) intersects the asymptote of \(H\) with equation \(y = \frac { 3 } { 5 } x\) at the point \(R\) and the asymptote with equation \(\mathrm { y } = - \frac { 3 } { 5 } \mathrm { x }\) at the point S .
  1. Use differentiation to show that an equation of the tangent to H at P is $$3 x = 5 y \sin u + 15 \cos u$$
  2. Prove that P is the mid-point of RS.