Edexcel F2 2018 Specimen — Question 3

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2018
SessionSpecimen
TopicFirst order differential equations (integrating factor)

  1. (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 x y = x \mathrm { e } ^ { - x ^ { 2 } } y ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 x z = - 2 x \mathrm { e } ^ { - x ^ { 2 } }$$ (b) Solve differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence find the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
VIIIV SIHI NI J14M 10N OCVIIN SIHI NI III HM ION OOVERV SIHI NI JIIIM ION OO