- (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 x y = x \mathrm { e } ^ { - x ^ { 2 } } y ^ { 3 }$$
into the differential equation
$$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 x z = - 2 x \mathrm { e } ^ { - x ^ { 2 } }$$
(b) Solve differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence find the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
| VIIIV SIHI NI J14M 10N OC | VIIN SIHI NI III HM ION OO | VERV SIHI NI JIIIM ION OO |