| Exam Board | Edexcel |
| Module | F2 (Further Pure Mathematics 2) |
| Year | 2021 |
| Session | October |
| Topic | Second order differential equations |
7. (a) Show that the transformation \(x = t ^ { 2 }\) transforms the differential equation
$$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 15 y = 15 x$$
into the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } - 15 y = 15 t ^ { 2 }$$
(b) Solve differential equation (II) to determine \(y\) in terms of \(t\).
(c) Hence determine the general solution of differential equation (I).
\includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-24_2258_53_308_1980}